Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Highly eccentric orbits are one of the major surprises of exoplanets relative to the solar system and indicate rich and tumultuous dynamical histories. One system of particular interest is Kepler-1656, which hosts a sub-Jovian planet with an eccentricity of 0.8. Sufficiently eccentric orbits will shrink in the semimajor axis due to tidal dissipation of orbital energy during periastron passage. Here our goal was to assess whether Kepler-1656b is currently undergoing such high-eccentricity migration, and to further understand the system’s origins and architecture. We confirm a second planet in the system with M c = 0.40 ± 0.09 M jup and P c = 1919 ± 27 days. We simulated the dynamical evolution of planet b in the presence of planet c and find a variety of possible outcomes for the system, such as tidal migration and engulfment. The system is consistent with an in situ dynamical origin of planet b followed by subsequent eccentric Kozai–Lidov perturbations that excite Kepler-1656b’s eccentricity gently, i.e., without initiating tidal migration. Thus, despite its high eccentricity, we find no evidence that planet b is or has migrated through the high-eccentricity channel. Finally, we predict the outer orbit to be mutually inclined in a nearlymore »Free, publicly-accessible full text available April 22, 2023
-
Abstract We use a high-precision radial velocity survey of FGKM stars to study the conditional occurrence of two classes of planets: close-in small planets (0.023–1 au, 2–30 M ⊕ ) and distant giant planets (0.23–10 au, 30–6000 M ⊕ ). We find that 41 − 13 + 15 % of systems with a close-in, small planet also host an outer giant, compared to 17.6 − 1.9 + 2.4 % for stars irrespective of small planet presence. This implies that small planet hosts may be enhanced in outer giant occurrences compared to all stars with 1.7 σ significance. Conversely, we estimate that 42 − 13 + 17 % of cold giant hosts also host an inner small planet, compared to 27.6 − 4.8 + 5.8 % of stars irrespective of cold giant presence. We also find that more massive and close-in giant planets are not associated with small inner planets. Specifically, our sample indicates that small planets are less likely to have outer giant companions more massive than approximately 120 M ⊕ and within 0.3–3 au, than to have less massive or more distant giant companions, with ∼2.2 σ confidence. This implies that massive gas giants within 0.3–3 au may suppressmore »Free, publicly-accessible full text available August 17, 2023
-
Abstract We combine multiple campaigns of K2 photometry with precision radial velocity measurements from Keck-HIRES to measure the masses of three sub-Neptune-sized planets. We confirm the planetary nature of the massive sub-Neptune K2-182 b ( P b = 4.7 days, R b = 2.69 R ⊕ ) and derive refined parameters for K2-199 b and c ( P b = 3.2 days, R b = 1.73 R ⊕ and P c = 7.4 days, R c = 2.85 R ⊕ ). These planets provide valuable data points in the mass–radius plane, especially as TESS continues to reveal an increasingly diverse sample of sub-Neptunes. The moderately bright ( V = 12.0 mag) early K dwarf K2-182 (EPIC 211359660) was observed during K2 campaigns 5 and 18. We find that K2-182 b is potentially one of the densest sub-Neptunes known to date (20 ± 5 M ⊕ and 5.6 ± 1.4 g cm −3 ). The K5V dwarf K2-199 (EPIC 212779596; V = 12.3 mag), observed in K2 campaigns 6 and 17, hosts two recently confirmed planets. We refine the orbital and planetary parameters for K2-199 b and c by modeling both campaigns of K2 photometry and adding 12 Keck-HIRES measurements tomore »
-
Abstract We present the Distant Giants Survey, a three-year radial velocity campaign to measure P(DG∣CS), the conditional occurrence of distant giant planets (DG;
M p ∼ 0.3–13M J,P > 1 yr) in systems hosting a close-in small planet (CS;R p < 10R ⊕). For the past two years, we have monitored 47 Sun-like stars hosting small transiting planets detected by TESS. We present the selection criteria used to assemble our sample and report the discovery of two distant giant planets, TOI-1669 b and TOI-1694 c. For TOI-1669 b we find that ,P = 502 ± 16 days, ande < 0.27, while for TOI-1694 c, ,P = 389.2 ± 3.9 days, ande = 0.18 ± 0.05. We also confirmed the 3.8 days transiting planet TOI-1694 b by measuring a true mass ofM = 26.1 ± 2.2M ⊕. At the end of the Distant Giants Survey, we will incorporate TOI-1669 b and TOI-1694 c into our calculation of P(DG∣CS), a crucial statistic for understanding the relationship between outer giants and small inner companions. -
Abstract The Kepler and TESS missions have demonstrated that planets are ubiquitous. However, the success of these missions heavily depends on ground-based radial velocity (RV) surveys, which combined with transit photometry can yield bulk densities and orbital properties. While most Kepler host stars are too faint for detailed follow-up observations, TESS is detecting planets orbiting nearby bright stars that are more amenable to RV characterization. Here, we introduce the TESS-Keck Survey (TKS), an RV program using ∼100 nights on Keck/HIRES to study exoplanets identified by TESS. The primary survey aims are investigating the link between stellar properties and the compositions of small planets; studying how the diversity of system architectures depends on dynamical configurations or planet multiplicity; identifying prime candidates for atmospheric studies with JWST; and understanding the role of stellar evolution in shaping planetary systems. We present a fully automated target selection algorithm, which yielded 103 planets in 86 systems for the final TKS sample. Most TKS hosts are inactive, solar-like, main-sequence stars (4500 K ≤ T eff <6000 K) at a wide range of metallicities. The selected TKS sample contains 71 small planets ( R p ≤ 4 R ⊕ ), 11 systems with multiple transiting candidates, sixmore »Free, publicly-accessible full text available May 30, 2023