Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 20, 2024
-
null (Ed.)Robust atomic-to-meso-scale chirality is now observed in the one-dimensional form of tellurium. This enables a large and counter-intuitive circular-polarization dependent second harmonic generation response above 0.2 which is not present in two-dimensional tellurium. Orientation variations in 1D tellurium nanowires obtained by four-dimensional scanning transmission electron microscopy (4D-STEM) and their correlation with unconventional non-linear optical properties by second harmonic generation circular dichroism (SHG-CD) uncovers an unexpected circular-polarization dependent SHG response from 1D nanowire bundles – an order-of-magnitude higher than in single-crystal two-dimensional tellurium structures – suggesting the atomic- and meso-scale crystalline structure of the 1D material possesses an inherent chirality not present in its 2D form; and which is strong enough to manifest even in the aggregate non-linear optical (NLO) properties of aggregates.more » « less
-
1D organic metal halide hybrids (OMHHs) exhibit strongly anisotropic optical properties, highly efficient light emission, and large Stokes shift, holding promise for novel photodetection and lighting applications. However, the fundamental mechanisms governing their unique optical properties and in particular the impacts of surface effects are not understood. Herein, 1D C4N2H14PbBr4by polarization‐dependent time‐averaged and time‐resolved photoluminescence (TRPL) spectroscopy, as a function of photoexcitation energy, is investigated. Surprisingly, it is found that the emission under photoexcitation polarized parallel to the 1D metal halide chains can be either stronger or weaker than that under perpendicular polarization, depending on the excitation energy. The excitation‐energy‐dependent anisotropic emission is attributed to fast surface recombination, supported by first‐principles calculations of optical absorption in this material. The fast surface recombination is directly confirmed by TRPL measurements, when the excitation is polarized parallel to the chains. The comprehensive studies provide a more complete picture for a deeper understanding of the optical anisotropy in 1D OMHHs.
-
A device for measuring a plurality of material properties is designed to include accurate sensors configured to consecutively obtain thermal conductivity, electrical conductivity, and Seebeck coefficient of a single sample while maintaining a vacuum or inert gas environment. Four major design factors are identified as sample-heat spreader mismatch, radiation losses, parasitic losses, and sample surface temperature variance. The design is analyzed using finite element methods for high temperature ranges up to 1000°C as well as ultra-high temperatures up to 2500°C. A temperature uncertainty of 0.46% was estimated for a sample with cold and hot sides at 905.1 and 908.5°C, respectively. The uncertainty at 1000°C was calculated to be 0.7% for a ?T of 5°C between the hot and cold sides. The thermal conductivity uncertainty was calculated to be -8.6% at ~900°C for a case with radiative gains, and +8.2% at ~1000°C for a case with radiative losses, indicating the sensitivity of the measurement to the temperature of the thermal guard in relation to the heat spreader and sample temperature. Lower limits of -17 and -13% error in thermal conductivity measurements were estimated at the ultra-high temperature of ~2500°C for a single-stage and double-stage radiation shield, respectively. It is noted that this design is not limited to electro-thermal characterization and will enable measurement of ionic conductivity and surface temperatures of energy materials under realistic operating conditions in extreme temperature environments.more » « less
-
Abstract 2D memristors have demonstrated attractive resistive switching characteristics recently but also suffer from the reliability issue, which limits practical applications. Previous efforts on 2D memristors have primarily focused on exploring new material systems, while damage from the metallization step remains a practical concern for the reliability of 2D memristors. Here, the impact of metallization conditions and the thickness of MoS2films on the reliability and other device metrics of MoS2‐based memristors is carefully studied. The statistical electrical measurements show that the reliability can be improved to 92% for yield and improved by ≈16× for average DC cycling endurance in the devices by reducing the top electrode (TE) deposition rate and increasing the thickness of MoS2films. Intriguing convergence of switching voltages and resistance ratio is revealed by the statistical analysis of experimental switching cycles. An “effective switching layer” model compatible with both monolayer and few‐layer MoS2, is proposed to understand the reliability improvement related to the optimization of fabrication configuration and the convergence of switching metrics. The Monte Carlo simulations help illustrate the underlying physics of endurance failure associated with cluster formation and provide additional insight into endurance improvement with device fabrication optimization.
-
Abstract Actinide materials have various applications that range from nuclear energy to quantum computing. Most current efforts have focused on bulk actinide materials. Tuning functional properties by using strain engineering in epitaxial thin films is largely lacking. Using uranium dioxide (UO2) as a model system, in this work, the authors explore strain engineering in actinide epitaxial thin films and investigate the origin of induced ferromagnetism in an antiferromagnet UO2. It is found that UO2+
x thin films are hypostoichiometric (x <0) with in‐plane tensile strain, while they are hyperstoichiometric (x >0) with in‐plane compressive strain. Different from strain engineering in non‐actinide oxide thin films, the epitaxial strain in UO2is accommodated by point defects such as vacancies and interstitials due to the low formation energy. Both epitaxial strain and strain relaxation induced point defects such as oxygen/uranium vacancies and oxygen/uranium interstitials can distort magnetic structure and result in magnetic moments. This work reveals the correlation among strain, point defects and ferromagnetism in strain engineered UO2+x thin films and the results offer new opportunities to understand the influence of coupled order parameters on the emergent properties of many other actinide thin films. -
Abstract 2D materials have been of considerable interest as new materials for device applications. Non‐volatile resistive switching applications of MoS2and WS2have been previously demonstrated; however, these applications are dramatically limited by high temperatures and extended times needed for the large‐area synthesis of 2D materials on crystalline substrates. The experimental results demonstrate a one‐step sulfurization method to synthesize MoS2and WS2at 550
° C in 15 min on sapphire wafers. Furthermore, a large area transfer of the synthesized thin films to SiO2/Si substrates is achieved. Following this, MoS2and WS2memristors are fabricated that exhibit stable non‐volatile switching and a satisfactory large on/off current ratio (103–105) with good uniformity. Tuning the sulfurization parameters (temperature and metal precursor thickness) is found to be a straightforward and effective strategy to improve the performance of the memristors. The demonstration of large‐scale MoS2and WS2memristors with a one‐step low‐temperature sulfurization method with simple strategy to tuning can lead to potential applications such as flexible memory and neuromorphic computing.