Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Due to the limited availability of actual large-scale datasets, realistic synthetic trajectory data play a crucial role in various research domains, including spatiotemporal data mining and data management, and domain-driven research related to transportation planning and urban analytics. Existing generation methods rely on predefined heuristics and cannot learn the unknown underlying generative mechanisms. This work introduces two end-to-end approaches for trajectory generation. The first approach comprises deep generative VAE-like models that factorize global and local semantics (habits vs. random routing change). We further enhance this approach by developing novel inference strategies based on variational inference and constrained optimization to ensure the validity of spatiotemporal aspects. This novel deep neural network architecture implements generative and inference models with dynamic latent priors. The second approach introduces a language model (LM) inspired generation as another benchmarking and foundational approach. The LM-inspired approach conceptualizes trajectories as sentences with the aim of predicting the likelihood of subsequent locations on a trajectory, given the locations as context. As a result, the LM-inspired approach implicitly learns the inherent spatiotemporal structure and other embedded semantics within the trajectories. These proposed methods demonstrate substantial quantitative and qualitative improvements over existing approaches, as evidenced by extensive experimental evaluations.more » « lessFree, publicly-accessible full text available February 13, 2026
-
Free, publicly-accessible full text available October 29, 2025
-
Free, publicly-accessible full text available October 29, 2025
-
Human mobility data science using trajectories or check-ins of individuals has many applications. Recently, we have seen a plethora of research efforts that tackle these applications. However, research progress in this field is limited by a lack of large and representative datasets. The largest and most commonly used dataset of individual human trajectories captures fewer than 200 individuals, while datasets of individual human check-ins capture fewer than 100 check-ins per city per day. Thus, it is not clear if findings from the human mobility data science community would generalize to large populations. Since obtaining massive, representative, and individual-level human mobility data is hard to come by due to privacy considerations, the vision of this work is to embrace the use of data generated by large-scale socially realistic microsimulations. Informed by both real data and leveraging social and behavioral theories, massive spatially explicit microsimulations may allow us to simulate entire megacities at the person level. The simulated worlds, which do not capture any identifiable personal information, allow us to perform “in silico” experiments using the simulated world as a sandbox in which we have perfect information and perfect control without jeopardizing the privacy of any actual individual. In silico experiments have become commonplace in other scientific domains such as chemistry and biology, permitting experiments that foster the understanding of concepts without any harm to individuals. This work describes challenges and opportunities for leveraging massive and realistic simulated alternate worlds for in silico human mobility data science.more » « lessFree, publicly-accessible full text available June 30, 2025
-
Infectious disease spread within the human population can be conceptualized as a complex system composed of individuals who interact and transmit viruses through spatio-temporal processes that manifest across and between scales. The complexity of this system ultimately means that the spread of infectious diseases is difficult to understand, predict, and respond to effectively. Research interest in GeoAI for public health has been fueled by the increased availability of rich data sources such as human mobility data, OpenStreetMap data, contact tracing data, symptomatic online surveys, retail and commerce data, genomics data, and more. This data availability has resulted in a wide variety of data-driven solutions for infectious disease spread prediction which show potential in enhancing our forecasting capabilities. This book chapter (1) motivates the need for AI-based solutions in public health by showing the heterogeneity of human behavior related to health, (2) provides a brief survey of current state-of-the-art solutions using AI for infectious disease spread prediction, (3) describes a use-case of using large-scale human mobility data to inform AI models for the prediction of infectious disease spread in a city, and (4) provides future research directions and ideas.more » « less
-
Abstract Having accurate building information is paramount for a plethora of applications, including humanitarian efforts, city planning, scientific studies, and navigation systems. While volunteered geographic information from sources such as OpenStreetMap (OSM) has good building geometry coverage, descriptive attributes such as the type of a building are sparse. To fill this gap, this study proposes a supervised learning-based approach to provide meaningful, semantic information for OSM data without manual intervention. We present a basic demonstration of our approach that classifies buildings into either residential or non-residential types for three study areas: Fairfax County in Virginia (VA), Mecklenburg County in North Carolina (NC), and the City of Boulder in Colorado (CO). The model leverages (i) available OSM tags capturing non-spatial attributes, (ii) geometric and topological properties of the building footprints including adjacent types of roads, proximity to parking lots, and building size. The model is trained and tested using ground truth data available for the three study areas. The results show that our approach achieves high accuracy in predicting building types for the selected areas. Additionally, a trained model is transferable with high accuracy to other regions where ground truth data is unavailable. The OSM and data science community are invited to build upon our approach to further enrich the volunteered geographic information in an automated manner.more » « less