Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The purpose of this work is to quantitatively compare the energy cost of design alternatives for a process to produce ammonia (NH 3 ) from air, water, and renewable electricity. It is assumed that a Haber–Bosch (H–B) synthesis loop is available to produce 1000 metric tons (tonnes) of renewable NH 3 per day. The overall energy costs per tonne of NH 3 will then be estimated at U.S.$195, 197, 158, and 179 per tonne of NH 3 when H 2 is supplied by (i) natural gas reforming (reference), (ii) liquid phase electrolysis, (iii) solid oxide electrolysis (SOE) of water only, and (iv) simultaneous SOE of water and air. A renewable electricity price of U.S.$0.02 per kWh electric , and U.S.$6 per 10 6 BTU for natural gas is assumed. SOE provides some energy cost advantage but incurs the inherent risk of an emerging process. The last consideration is replacement of the H–B loop with atmospheric pressure chemical looping for ammonia synthesis (CLAS) combined with SOE for water electrolysis, and separately oxygen removal from air to provide N 2 , with energy costs of U.S.$153 per tonne of NH 3 . Overall, the most significant findings are (i) the energy costs are not substantially different for the alternatives investigated here and (ii) the direct SOE of a mixture of steam and air, followed by a H.–B. synthesis loop, or SOE to provide H 2 and N 2 separately, followed by CLAS may be attractive for small scale production, modular systems, remote locations, or stranded electricity resources with the primary motivation being process simplification rather than significantly lower energy cost.more » « less
-
Abstract Affordable synthetic ammonia (NH3) enables the production of nearly half of the food we eat and is emerging as a renewable energy carrier. Sodium‐promoted chemical looping NH3synthesis at atmospheric pressure using manganese (Mn) is here demonstrated. The looping process may be advantageous when inexpensive renewable hydrogen from electrolysis is available. Avoiding the high pressure of the Haber‐Bosch process by chemical looping using earth‐abundant materials may reduce capital cost, facilitate intermittent operation, and allow operation in geographic areas where infrastructure is less sophisticated. At this early stage, the data suggest that 0.28 m3of a 50 % porosity solid Mn bed may suffice to produce 100 kg NH3per day by chemical looping, with abundant opportunities for improvement.
-
ABSTRACT This work examines the sorption, diffusion, and polymer relaxation behavior for water and C1‐C7 alcohol vapors at 30 °C in ethylenediamine vapor‐phase crosslinked Matrimid. Ethylenediamine is sufficiently volatile that crosslinking can occur by exposing the polymeric film to saturated vapor, in contrast to more conventional means of dissolving the crosslinker in a solvent and immersing the polymeric film in the solution. The vapor‐phase exposure method avoids the use of additional solvent and undesired solvent‐induced swelling. Sorption isotherms demonstrate that water and C1‐C5 alcohols do not appreciably differ for unmodified and crosslinked Matrimid; however, an approximate 90% reduction in sorption was determined for hexanol and heptanol. A minor impact on diffusion coefficients for water, methanol, and ethanol was observed, while those of propanol and butanol were reduced over an order of magnitude. Relaxation kinetics were similarly unchanged for water and C1‐C3 alcohols, while being significantly reduced for butanol and higher alcohols. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci.
2017 ,134 , 44771.