skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Pham, Jenny Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Ecologists have long studied the evolution of niche breadth, including how variability in environments can drive the evolution of specialism and generalism. This concept is of particular interest in viruses, where niche breadth evolution may explain viral disease emergence, or underlie the potential for therapeutic measures like phage therapy. Despite the significance and potential applications of virus–host interactions, the genetic determinants of niche breadth evolution remain underexplored in many bacteriophages. In this study, we present the results of an evolution experiment with a model bacteriophage system,Escherichia virus T4,in several host environments: exposure toEscherichia coliC, exposure toE. coliK‐12, and exposure to bothE. coliC andE. coliK‐12. This experimental framework allowed us to investigate the phenotypic and molecular manifestations of niche breadth evolution. First, we show that selection on different hosts led to measurable changes in phage productivity in all experimental populations. Second, whole—genome sequencing of experimental populations revealed signatures of selection. Finally, clear and consistent patterns emerged across the host environments, especially the presence of new mutations in phage structural genes—genes encoding proteins that provide morphological and biophysical integrity to a virus. A comparison of mutations found across functional gene categories revealed that structural genes acquired significantly more mutations than other categories. Our findings suggest that structural genes are central determinants in bacteriophage niche breadth.

    more » « less