skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pham, Nguyen Dinh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study smoothed analysis of distributed graph algorithms, focusing on the fundamental minimum spanning tree (MST) problem. With the goal of studying the time complexity of distributed MST as a function of the "perturbation" of the input graph, we posit a smoothing model that is parameterized by a smoothing parameter 0 ≤ ϵ(n) ≤ 1 which controls the amount of random edges that can be added to an input graph G per round. Informally, ϵ(n) is the probability (typically a small function of n, e.g., n--¼) that a random edge can be added to a node per round. The added random edges, once they are added, can be used (only) for communication. We show upper and lower bounds on the time complexity of distributed MST in the above smoothing model. We present a distributed algorithm that, with high probability, 1 computes an MST and runs in Õ(min{1/√ϵ(n)2O(√log n), D+ √n}) rounds2 where ϵ is the smoothing parameter, D is the network diameter and n is the network size. To complement our upper bound, we also show a lower bound of Ω(min{1/√ϵ(n), D + √n}). We note that the upper and lower bounds essentially match except for a multiplicative 2O(√log n) polylog(n) factor. Our work can be considered as a first step in understanding the smoothed complexity of distributed graph algorithms. 
    more » « less