Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract SummaryNew advances in single-cell multi-omics experiments have allowed biologists to examine how various biological factors regulate processes in concert on the cellular level. However, measuring multiple cellular features for a single cell can be quite resource-intensive or impossible with the current technology. By using optimal transport (OT) to align cells and features across disparate datasets produced by separate assays, Single Cell alignment using Optimal Transport + (SCOT+), our unsupervised single-cell alignment software suite, allows biologists to align their data without the need for any correspondence. SCOT+ implements a generic optimal transport solution that can be reduced to multiple different previously studied OT optimization procedures including SCOT, SCOTv2, SCOOTR, and AGW for single cell, each of which provides state-of-the-art single-cell alignment performance. Outside of giving a unified framework to interact with prior formulations, the generality of SCOT+ optimization naturally gives rise to a new OT loss, Unbalanced Augmented Gromov-Wasserstein (UAGW), and a corresponding optimizer. With our user-friendly website and tutorials, this new package will help improve biological analyses by allowing for more accurate downstream analyses on multi-omics single-cell measurements. Implementation and AvailabilityOur algorithm is implemented in Pytorch and available on PyPI and GitHub (https://github.com/scotplus/scotplus). Additionally, we have many tutorials available in a separate GitHub repository (https://github.com/scotplus/book_source) and on our website (https://scotplus.github.io/).more » « lessFree, publicly-accessible full text available December 6, 2026
-
Abstract Nitrate is a ubiquitous aqueous pollutant from agricultural and industrial activities. At the same time, conversion of nitrate to ammonia provides an attractive solution for the coupled environmental and energy challenge underlying the nitrogen cycle, by valorizing a pollutant to a carbon-free energy carrier and essential chemical feedstock. Mass transport limitations are a key obstacle to the efficient conversion of nitrate to ammonia from water streams, due to the dilute concentration of nitrate. Here, we develop bifunctional electrodes that couple a nitrate-selective redox-electrosorbent (polyaniline) with an electrocatalyst (cobalt oxide) for nitrate to ammonium conversion. We demonstrate the synergistic reactive separation of nitrate through solely electrochemical control. Electrochemically-reversible nitrate uptake greater than 70 mg/g can be achieved, with electronic structure calculations and spectroscopic measurements providing insight into the underlying role of hydrogen bonding for nitrate selectivity. Using agricultural tile drainage water containing dilute nitrate (0.27 mM), we demonstrate that the bifunctional electrode can achieve a 8-fold up-concentration of nitrate, a 24-fold enhancement of ammonium production rate (108.1 ug h −1 cm −2 ), and a >10-fold enhancement in energy efficiency when compared to direct electrocatalysis in the dilute stream. Our study provides a generalized strategy for a fully electrified reaction-separation pathway for modular nitrate remediation and ammonia production.more » « less
An official website of the United States government
