Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Deep neural networks (DNNs) have been widely deployed in real-world, mission-critical applications, necessitating effective approaches to protect deep learning models against malicious attacks. Motivated by the high stealthiness and potential harm of backdoor attacks, a series of backdoor defense methods for DNNs have been proposed. However, most existing approaches require access to clean training data, hindering their practical use. Additionally, state-of-the-art (SOTA) solutions cannot simultaneously enhance model robustness and compactness in a data-free manner, which is crucial in resource-constrained applications. To address these challenges, in this paper, we propose Clean & Compact (C&C), an efficient data-free backdoor defense mechanism that can bring both purification and compactness to the original infected DNNs. Built upon the intriguing rank-level sensitivity to trigger patterns, C&C co-explores and achieves high model cleanliness and efficiency without the need for training data, making this solution very attractive in many real-world, resource-limited scenarios. Extensive evaluations across different settings consistently demonstrate that our proposed approach outperforms SOTA backdoor defense methods.more » « lessFree, publicly-accessible full text available September 8, 2025
-
Free, publicly-accessible full text available May 29, 2025