skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Pharr, Matt"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present NoodlePrint, a generalized computational framework for maximally concurrent layer-wise cooperative 3D printing (C3DP) of arbitrary part geometries with multiple robots. NoodlePrint is inspired by a recently discovered set of helically interlocked space-filling shapes called VoroNoodles. Leveraging this unique geometric relationship, we introduce an algorithmic pipeline for generating helically interlocked cellular segmentation of arbitrary parts followed by layer-wise cell sequencing and path planning for cooperative 3D printing. Furthermore, we introduce a novel concurrence measure that quantifies the amount of printing parallelization across multiple robots. Consequently, we integrate this measure to optimize the location and orientation of a part for maximally parallel printing. We systematically study the relationship between the helix parameters (i.e., cellular interlocking), the cell size, the amount of concurrent printing, and the total printing time. Our study revealed that both concurrence and time to print primarily depend on the cell size, thereby allowing the determination of interlocking independent of time to print. To demonstrate the generality of our approach with respect to part geometry and the number of robots, we implemented two cooperative 3D printing systems with two and three printing robots and printed a variety of part geometries. Through comparative bending and tensile tests, we show that helically interlocked part segmentation is robust to gaps between segments. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Sodium metal has emerged as a candidate anode material in rechargeable batteries owing to its high theoretical capacity, low standard reduction potential, and abundance in the earth's crust. Prior to practical deployment, it is critical to thoroughly assess sodium's mechanical properties, as to fully understand and thus help mitigate potential failure mechanisms. Herein, we examine the fracture behavior of sodium metal through tensile tests in an inert environment. We find that sodium is nearly insensitive to flaws (crack-like features), i.e. , its effective strength is virtually unaffected by the presence of flaws. Instead, under tension, sodium exhibits extreme necking that leads to eventual failure. We also characterize the microstructural features associated with fracture of sodium through scanning electron microscopy studies, which demonstrate several features indicative of highly ductile fracture, including wavy slip and microvoid formation. Finally, we discuss the implications of these experimental observations in the context of battery applications. 
    more » « less