Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2024
-
Abstract Some of the most energetic pulsars exhibit rotation-modulated
γ -ray emission in the 0.1–100 GeV band. The luminosity of this emission is typically 0.1%–10% of the pulsar spin-down power (γ -ray efficiency), implying that a significant fraction of the available electromagnetic energy is dissipated in the magnetosphere and reradiated as high-energy photons. To investigate this phenomenon we model a pulsar magnetosphere using 3D particle-in-cell simulations with strong synchrotron cooling. We particularly focus on the dynamics of the equatorial current sheet where magnetic reconnection and energy dissipation take place. Our simulations demonstrate that a fraction of the spin-down power dissipated in the magnetospheric current sheet is controlled by the rate of magnetic reconnection at microphysical plasma scales and only depends on the pulsar inclination angle. We demonstrate that the maximum energy and the distribution function of accelerated pairs is controlled by the available magnetic energy per particle near the current sheet, the magnetization parameter. The shape and the extent of the plasma distribution is imprinted in the observed synchrotron emission, in particular, in the peak and the cutoff of the observed spectrum. We study how the strength of synchrotron cooling affects the observed variety of spectral shapes. Our conclusions naturally explain why pulsarsmore » -
Free, publicly-accessible full text available November 1, 2023
-
ABSTRACT The coalescence of two neutron stars is accompanied by the emission of gravitational waves, and can also feature electromagnetic counterparts powered by mass ejecta and the formation of a relativistic jet after the merger. Since neutron stars can feature strong magnetic fields, the non-trivial interaction of the neutron star magnetospheres might fuel potentially powerful electromagnetic transients prior to merger. A key process powering those precursor transients is relativistic reconnection in strong current sheets formed between the two stars. In this work, we provide a detailed analysis of how the twisting of the common magnetosphere of the binary leads to an emission of electromagnetic flares, akin to those produced in the solar corona. By means of relativistic force-free electrodynamics simulations, we clarify the role of different magnetic field topologies in the process. We conclude that flaring will always occur for suitable magnetic field alignments, unless one of the neutron stars has a magnetic field significantly weaker than the other.Free, publicly-accessible full text available August 2, 2023
-
Abstract The most common form of magnetar activity is short X-ray bursts, with durations from milliseconds to seconds, and luminosities ranging from 1036–1043erg s−1. Recently, an X-ray burst from the galactic magnetar SGR 1935+2154 was detected to be coincident with two fast radio burst (FRB) like events from the same source, providing evidence that FRBs may be linked to magnetar bursts. Using fully 3D force-free electrodynamics simulations, we show that such magnetar bursts may be produced by Alfvén waves launched from localized magnetar quakes: a wave packet propagates to the outer magnetosphere, becomes nonlinear, and escapes the magnetosphere, forming an ultra-relativistic ejecta. The ejecta pushes open the magnetospheric field lines, creating current sheets behind it. Magnetic reconnection can happen at these current sheets, leading to plasma energization and X-ray emission. The angular size of the ejecta can be compact, ≲1 sr if the quake launching region is small, ≲0.01 sr at the stellar surface. We discuss implications for the FRBs and the coincident X-ray burst from SGR 1935+2154.
-
ABSTRACT Astrophysical objects possessing a material surface (white dwarfs, young stars, etc.) may accrete gas from the disc through the so-called surface boundary layer (BL), in which the angular velocity of the accreting gas experiences a sharp drop. Acoustic waves excited by the supersonic shear in the BL play an important role in mediating the angular momentum and mass transport through that region. Here we examine the characteristics of the angular momentum transport produced by the different types of wave modes emerging in the inner disc, using the results of a large suite of hydrodynamic simulations of the BLs. We provide a comparative analysis of the transport properties of different modes across the range of relevant disc parameters. In particular, we identify the types of modes that are responsible for the mass accretion on to the central object. We find the correlated perturbations of surface density and radial velocity to provide an important contribution to the mass accretion rate. Although the wave-driven transport is intrinsically non-local, we do observe a clear correlation between the angular momentum flux injected into the disc by the waves and the mass accretion rate through the BL. We find the efficiency of angular momentum transportmore »
-
Abstract We present high-resolution 2D and 3D simulations of magnetized decaying turbulence in relativistic, resistive magnetohydrodynamics. The simulations show dynamic formation of large-scale intermittent long-lived current sheets being disrupted into plasmoid chains by the tearing instability. These current sheets are locations of enhanced magnetic-field dissipation and heating of the plasma. We find magnetic energy spectra ∝ k −3/2 , together with strongly pronounced dynamic alignment of Elsässer fields and of velocity and magnetic fields, for strong guide-field turbulence, whereas we retrieve spectra ∝ k −5/3 for the case of a weak guide-field.