skip to main content

Search for: All records

Creators/Authors contains: "Phillips, Brian M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study proposes a surrogate-based cyber-physical aerodynamic shape optimization (SB-CP-ASO) approach for high-rise buildings under wind loading. Three components are developed in the SB-CP-ASO procedure: (1) an adaptive subtractive manufacturing technique, (2) a high-throughput wind tunnel testing procedure, and (3) a flexible infilling strategy. The downtime of the procedure is minimized through a parallel manufacturing and testing (llM&T) technique. An unexplored double-section setback strategy with various cross-sections and transitions positions is used to demonstrate the performance of the proposed procedure. A total of 173 physical specimens were evaluated to reach the optimization convergence within the reserved testing window. Further analysis of promising shapes considering multiple design wind speeds is suggested to achieve target performance objectives at various hazard levels. Practical information on setback and cross-section modification strategies is discussed based on the optimization results. In comparison with a square benchmark model, the roof drifts for promising candidates with similar building volumes are reduced by more than 70% at wind speeds higher than 50 m/s. This procedure is expected to provide an efficient platform between owners, architects, and structural engineers to identify ideal candidates within a defined design space for real-world applications of high-rise buildings. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. This study explores the complementary effects of side and corner modification on the aerodynamic behavior for high-rise buildings across representative design wind speeds. Twelve doubly-symmetric prismatic models were examined using high-frequency force balance (HFFB) wind tunnel testing at the University of Florida. The effectiveness of the aerodynamic strategies was quantified using roof drift and roof acceleration under different design wind speeds covering serviceability and survivability. The results show that both corner and side modifications can achieve promising aerodynamic performance under high design wind speeds. However, the effectiveness of the aerodynamic strategies is significantly reduced under low design wind speeds. With a corner modification strategy, the vortex shedding frequency is increased, leading to worse across-wind response at lower design wind speeds when compared to the square benchmark model. To address this issue, side modifications (i.e., side protrusions) can be used to preserve the vortex shedding frequency and achieve competitive aerodynamic performance while simultaneously maintaining the floor area and geometry. This research explores new aerodynamic modification options for owners, architects, and structural engineers with the aim of better aerodynamic performance for high-rise buildings without compromising other design objectives. 
    more » « less
  3. Abstract

    Near‐fault pulse‐type ground motions have characteristics that are substantially different from ordinary far‐field ground motions. It is essential to understand the unique effects of pulse‐type ground motions on structures and include the effects in seismic design. This paper investigates the effects of near‐fault pulse‐type ground motions on the structural response of a 3‐story steel structure with nonlinear viscous dampers using the real‐time hybrid simulation (RTHS) testing method. The structure is designed for 75% of the code‐specified design base shear strength. In the RTHS, the loop of action and reaction between the experimental and numerical partitions are executed in real time, accurately capturing the velocity pulse effects of pulse‐type ground motions. A set of 10 unscaled pulse‐type ground motions at the design basis earthquake (DBE) level is used for the RTHS. The test results validated that RTHS is a viable method for experimentally investigating the complicated structural behavior of structures with rate‐dependent damping devices, and showed that the dampers are essentially effective in earthquake hazard mitigation effects involving pulse‐type ground motions. The average peak story drift ratio under the set of pulse‐type ground motions is 1.08% radians with a COV value less than 0.3, which indicated that structural system would achieve the ASCE 7–10 seismic performance objective for Occupancy Category III structures under the DBE level pulse‐type ground motions. Additionally, a nonlinear Maxwell model for the nonlinear viscous dampers is validated for future structural reliability numerical studies involving pulse‐type ground motions.

    more » « less
  4. ABSTRACT: This paper explores the use of cyber-physical systems (CPS) for optimal design in wind engineering. The approach combines the accuracy of physical wind tunnel testing with the ability to efficiently explore a solution space using numerical optimization algorithms. The approach is fully automated, with experiments executed in a boundary layer wind tunnel (BLWT), sensor feedback monitored by a high-performance computer, and actuators used to bring about physical changes in the BLWT. Because the model is undergoing physical change as it approaches the optimal solution, this approach is given the name “loop-in-the-model” testing. The building selected for this study is a low-rise structure with a parapet wall of variable height. Parapet walls alter the location of the roof corner vortices, alleviating large suction loads on the windward facing roof corner and edges and setting up an interesting optimal design problem. In the BLWT, the model parapet height is adjusted using servo-motors to achieve a particular design. The model surface is instrumented with pressure taps to measure the envelope pressure loading. The taps are densely spaced on the roof to provide sufficient resolution to capture the change in roof corner vortex formation. Experiments are conducted using a boundary BLWT located at the University of Florida Natural Hazard Engineering Research Infrastructure (NHERI) Experimental Facility. The proposed CPS approach enables the optimal solution to be found quicker than brute force methods, in particular for complex structures with many design variables. The parapet wall provides a proof-of-concept study with a single design variable that has a non-monotonic influence on a structure’s wind load. This study focuses on envelope load effects, seeking the parapet height that minimizes roof and parapet wall suction loading. Implications are significant for more complex structures where the optimal solution may not be obvious and cannot be reasonably determined with traditional experimental or computational methods. KEYWORDS: Cyber-physical systems, optimization, boundary-layer wind tunnel, parapet wall, NHERI 
    more » « less