skip to main content


Search for: All records

Creators/Authors contains: "Phillips, Jeff M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kontorovich, Aryeh (Ed.)
    In linear distance metric learning, we are given data in one Euclidean metric space and the goal is to find an appropriate linear map to another Euclidean metric space which respects certain distance conditions as much as possible. In this paper, we formalize a simple and elegant method which reduces to a general continuous convex loss optimization problem, and for different noise models we derive the corresponding loss functions. We show that even if the data is noisy, the ground truth linear metric can be learned with any precision provided access to enough samples, and we provide a corresponding sample complexity bound. Moreover, we present an effective way to truncate the learned model to a low-rank model that can provably maintain the accuracy in the loss function and in parameters – the first such results of this type. Several experimental observations on synthetic and real data sets support and inform our theoretical results. 
    more » « less
    Free, publicly-accessible full text available April 30, 2025
  2. In linear distance metric learning, we are given data in one Euclidean metric space and the goal is to find an appropriate linear map to another Euclidean metric space which respects certain distance conditions as much as possible. In this paper, we formalize a simple and elegant method which reduces to a general continuous convex loss optimization problem, and for different noise models we derive the corresponding loss functions. We show that even if the data is noisy, the ground truth linear metric can be learned with any precision provided access to enough samples, and we provide a corresponding sample complexity bound. Moreover, we present an effective way to truncate the learned model to a low-rank model that can provably maintain the accuracy in the loss function and in parameters – the first such results of this type. Several experimental observations on synthetic and real data sets support and inform our theoretical results. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. Word vector embeddings have been shown to contain and amplify biases in the data they are extracted from. Consequently, many techniques have been proposed to identify, mitigate, and attenuate these biases in word representations. In this paper, we utilize interactive visualization to increase the interpretability and accessibility of a collection of state-of-the-art debiasing techniques. To aid this, we present the Visualization of Embedding Representations for deBiasing (“VERB”) system, an open-source web-based visualization tool that helps users gain a technical understanding and visual intuition of the inner workings of debiasing techniques, with a focus on their geometric properties. In particular, VERB offers easy-to-follow examples that explore the effects of these debiasing techniques on the geometry of high-dimensional word vectors. To help understand how various debiasing techniques change the underlying geometry, VERB decomposes each technique into interpretable sequences of primitive transformations and highlights their effect on the word vectors using dimensionality reduction and interactive visual exploration. VERB is designed to target natural language processing (NLP) practitioners who are designing decision-making systems on top of word embeddings, and also researchers working with the fairness and ethics of machine learning systems in NLP. It can also serve as a visual medium for education, which helps an NLP novice understand and mitigate biases in word embeddings. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  4. Free, publicly-accessible full text available December 15, 2024
  5. Word vector embeddings have been shown to contain and amplify biases in the data they are extracted from. Consequently, many techniques have been proposed to identify, mitigate, and attenuate these biases in word representations. In this paper, we utilize interactive visualization to increase the interpretability and accessibility of a collection of state-of-the-art debiasing techniques. To aid this, we present the Visualization of Embedding Representations for deBiasing (“VERB”) system, an open-source web-based visualization tool that helps users gain a technical understanding and visual intuition of the inner workings of debiasing techniques, with a focus on their geometric properties. In particular, VERB offers easy-to-follow examples that explore the effects of these debiasing techniques on the geometry of high-dimensional word vectors. To help understand how various debiasing techniques change the underlying geometry, VERB decomposes each technique into interpretable sequences of primitive transformations and highlights their effect on the word vectors using dimensionality reduction and interactive visual exploration. VERB is designed to target natural language processing (NLP) practitioners who are designing decision-making systems on top of word embeddings, and also researchers working with the fairness and ethics of machine learning systems in NLP. It can also serve as a visual medium for education, which helps an NLP novice understand and mitigate biases in word embeddings. 
    more » « less
  6. Abstract

    How do we ensure the veracity of science? The act of manipulating or fabricating scientific data has led to many high‐profile fraud cases and retractions. Detecting manipulated data, however, is a challenging and time‐consuming endeavor. Automated detection methods are limited due to the diversity of data types and manipulation techniques. Furthermore, patterns automatically flagged as suspicious can have reasonable explanations. Instead, we propose a nuanced approach where experts analyze tabular datasets, e.g., as part of the peer‐review process, using a guided, interactive visualization approach. In this paper, we present an analysis of how manipulated datasets are created and the artifacts these techniques generate. Based on these findings, we propose a suite of visualization methods to surface potential irregularities. We have implemented these methods in Ferret, a visualization tool for data forensics work. Ferret makes potential data issues salient and provides guidance on spotting signs of tampering and differentiating them from truthful data.

     
    more » « less