Roots contribute a large fraction of CO2efflux from soils, yet the extent to which global change factors affect root‐derived fluxes is poorly understood. We investigated how red maple (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Acer rubrum ) and red oak (Quercus rubra ) root biomass and respiration respond to long‐term (15 years) soil warming, nitrogen addition, or their combination in a temperate forest. We found that ecosystem root respiration was decreased by 40% under both single‐factor treatments (nitrogen addition or warming) but not under their combination (heated × nitrogen). This response was driven by the reduction of mass‐specific root respiration under warming and a reduction in maple root biomass in both single‐factor treatments. Mass‐specific root respiration rates for both species acclimated to soil warming, resulting in a 43% reduction, but were not affected by N addition or the combined heated × N treatment. Notably, the addition of nitrogen to warmed soils alleviated thermal acclimation and returned mass‐specific respiration rates to control levels. Oak roots contributed disproportionately to ecosystem root respiration despite the decrease in respiration rates as their biomass was maintained or enhanced under warming and nitrogen addition. In contrast, maple root respiration rates were consistently higher than oak, and this difference became critical in the heated × nitrogen treatment, where maple root biomass increased, contributing significantly more CO2relative to single‐factor treatments. Our findings highlight the importance of accounting for the root component of respiration when assessing soil carbon loss in response to global change and demonstrate that combining warming and N addition produces effects that cannot be predicted by studying these factors in isolation. -
Abstract A hurricane event can often produce both intense rainfall and a storm tide that can cause a major compound flooding threat to coastlines. This paper examined applications of multivariate copula‐based time series models using data observed during Hurricane Irma (2017) along the coastlines of Florida, Georgia, and South Carolina, United States. Multivariate time series models were developed using bivariate copulas wherein storm tide and rainfall data were modeled using LOWESS‐based autoregressive moving average (ARMA).
n samples of observed data were then synthesized using a Monte Carlo approach in which the empirical copula and the parametric estimate of the copula were obtained to approximate two‐sidedp ‐values using the Rosenblatt probability integral transform method. Analysis suggested that proper selection of the underlying LOWESS‐based ARMA model was the crucial aspect for modeling compound flooding wherein Archimedean, Elliptical, and Extreme Value copulas all offered consistent flexibility in terms of dependence modeling. As a backdrop to compound flood probabilities, this research also outlined both theoretical and applied frameworks for the calculation of non‐exceedance probabilities in a multidimensional environment using classical isofrequency probability assumptions for the “AND” (a bivariate joint probability) and Survival Kendall definitions. Random realizations from storm copulas combined with multivariate non‐exceedance probability definitions ultimately showed there were periods of temporal yet cyclical high intensities that lasted 1–2 hr. Lastly, a discussion is presented on the broader application of the proposed methodology within the field of engineering design and risk management which may serve as a catalyst for the continued research in compound flooding. -
null (Ed.)The absence of crustal magnetic fields above the martian basins Hellas, Argyre, and Isidis is often interpreted as proof of an early, before 4.1 billion years (Ga) ago, or late, after 3.9 Ga ago, dynamo. We revisit these interpretations using new MAVEN magnetic field data. Weak fields are present over the 4.5-Ga old Borealis basin, with the transition to strong fields correlated with the basin edge. Magnetic fields, confined to a near-surface layer, are also detected above the 3.7-Ga old Lucus Planum. We conclude that a dynamo was present both before and after the formation of the basins Hellas, Utopia, Argyre, and Isidis. A long-lived, Earth-like dynamo is consistent with the absence of magnetization within large basins if the impacts excavated large portions of strongly magnetic crust and exposed deeper material with lower concentrations of magnetic minerals.more » « less
-
Motivated by the need to audit complex and black box models, there has been extensive research on quantifying how data features influence model predictions. Feature influence can be direct (a direct influence on model outcomes) and indirect (model outcomes are influenced via proxy features). Feature influence can also be expressed in aggregate over the training or test data or locally with respect to a single point. Current research has typically focused on one of each of these dimensions. In this paper, we develop disentangled influence audits, a procedure to audit the indirect influence of features. Specifically, we show that disentangled representations provide a mechanism to identify proxy features in the dataset, while allowing an explicit computation of feature influence on either individual outcomes or aggregate-level outcomes. We show through both theory and experiments that disentangled influence audits can both detect proxy features and show, for each individual or in aggregate, which of these proxy features affects the classifier being audited the most. In this respect, our method is more powerful than existing methods for ascertaining feature influence.more » « less
-
Abstract Biogenic volatile organic compounds (bVOCs) play important roles in ecological interactions and Earth system processes, yet the biological and physical processes that drive soil bVOC exchanges remain poorly understood. In temperate forests, nearly all tree species associate with arbuscular mycorrhizal (AM) or ectomycorrhizal (ECM) fungi. Given well‐established differences in soil biogeochemistry between AM‐dominated and ECM‐dominated stands, we hypothesized that bVOC exchanges with the atmosphere would differ between soils from the two stand types. We measured bVOC fluxes at the soil‐atmosphere interface in plots dominated by AM‐ and ECM‐associated trees in a deciduous forest in south‐central Indiana, USA during the early and late vegetative growing season. Soils in both AM‐ and ECM‐dominated plots were a net bVOC sink following leaf‐out and were a greater bVOC sink or smaller source at warmer soil temperatures (
T s ). The flux of different bVOCs from ECM plots was often related to soil water content in addition toT s . Methanol dominated total bVOC fluxes, and ECM soils demonstrated greater uptake relative to AM‐dominated plots, on the order of 170 nmol m−2 hr−1during the early growing season. Our results demonstrate the importance of soil dynamics characterized by mycorrhizal associations to bVOC dynamics in forested ecosystems and emphasize the need to study bidirectional soil bVOC uptake and emission processes.