- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Paouris, Grigoris (1)
-
Phillipson, Kaitlyn (1)
-
Rojas, J. Maurice (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Suppose $$F:=(f_1,\ldots,f_n)$$ is a system of random $$n$$-variate polynomials with $$f_i$$ having degree $$\leq\!d_i$$ and the coefficient of $$x^{a_1}_1\cdots x^{a_n}_n$$ in $$f_i$$ being an independent complex Gaussian of mean $$0$$ and variance $$\frac{d_i!}{a_1!\cdots a_n!\left(d_i-\sum^n_{j=1}a_j \right)!}$$. Recent progress on Smale's 17$$\thth$$ Problem by Lairez --- building upon seminal work of Shub, Beltran, Pardo, B\"{u}rgisser, and Cucker --- has resulted in a deterministic algorithm that finds a single (complex) approximate root of $$F$$ using just $$N^{O(1)}$$ arithmetic operations on average, where $$N\!:=\!\sum^n_{i=1}\frac{(n+d_i)!}{n!d_i!}$$ ($$=n(n+\max_i d_i)^{O(\min\{n,\max_i d_i)\}}$$) is the maximum possible total number of monomial terms for such an $$F$$. However, can one go faster when the number of terms is smaller, and we restrict to real coefficient and real roots? And can one still maintain average-case polynomial-time with more general probability measures? We show the answer is yes when $$F$$ is instead a binomial system --- a case whose numerical solution is a key step in polyhedral homotopy algorithms for solving arbitrary polynomial systems. We give a deterministic algorithm that finds a real approximate root (or correctly decides there are none) using just $$O(n^3\log^2(n\max_i d_i))$$ arithmetic operations on average. Furthermore, our approach allows Gaussians with arbitrary variance. We also discuss briefly the obstructions to maintaining average-case time polynomial in $$n\log \max_i d_i$$ when $$F$$ has more terms.more » « less
An official website of the United States government
