skip to main content


Search for: All records

Creators/Authors contains: "Phipps, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Target Absorbers for Neutrals (TANs) represent one of the most radioactive regions in the Large Hadron Collider. Seven 40cm long fused silica rods with different dopant specifications, manufactured by Heraeus, were irradiated in one of the TANs located around the ATLAS experiment by the Beam RAte of Neutrals (BRAN) detector group. This campaign took place during Run 2 data taking, which occurred between 2016 and 2018. This paper reports a complete characterization of optical transmission per unit length of irradiated fused silica materials as a function of wavelength (240 nm–1500 nm), dose (up to 18 MGy), and level of OH and H2 dopants introduced in the manufacturing process. The dose delivered to the rods was estimated using Monte Carlo simulations performed by the CERN FLUKA team. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. null (Ed.)
  3. Abstract

    Intracellular access with high spatiotemporal resolution can enhance the understanding of how neurons or cardiomyocytes regulate and orchestrate network activity and how this activity can be affected with pharmacology or other interventional modalities. Nanoscale devices often employ electroporation to transiently permeate the cell membrane and record intracellular potentials, which tend to decrease rapidly with time. Here, one reports innovative scalable, vertical, ultrasharp nanowire arrays that are individually addressable to enable long‐term, native recordings of intracellular potentials. One reports electrophysiological recordings that are indicative of intracellular access from 3D tissue‐like networks of neurons and cardiomyocytes across recording days and that do not decrease to extracellular amplitudes for the duration of the recording of several minutes. The findings are validated with cross‐sectional microscopy, pharmacology, and electrical interventions. The experiments and simulations demonstrate that the individual electrical addressability of nanowires is necessary for high‐fidelity intracellular electrophysiological recordings. This study advances the understanding of and control over high‐quality multichannel intracellular recordings and paves the way toward predictive, high‐throughput, and low‐cost electrophysiological drug screening platforms.

     
    more » « less
  4. Abstract A study of the charge conjugation and parity ( $$\textit{CP}$$ CP ) properties of the interaction between the Higgs boson and $$\tau $$ τ -leptons is presented. The study is based on a measurement of $$\textit{CP}$$ CP -sensitive angular observables defined by the visible decay products of $$\tau $$ τ -leptons produced in Higgs boson decays. The analysis uses 139 fb $$^{-1}$$ - 1 of proton–proton collision data recorded at a centre-of-mass energy of $$\sqrt{s}= 13$$ s = 13  TeV with the ATLAS detector at the Large Hadron Collider. Contributions from $$\textit{CP}$$ CP -violating interactions between the Higgs boson and $$\tau $$ τ -leptons are described by a single mixing angle parameter $$\phi _{\tau }$$ ϕ τ in the generalised Yukawa interaction. Without constraining the $$H\rightarrow \tau \tau $$ H → τ τ signal strength to its expected value under the Standard Model hypothesis, the mixing angle $$\phi _{\tau }$$ ϕ τ is measured to be $$9^{\circ } \pm 16^{\circ }$$ 9 ∘ ± 16 ∘ , with an expected value of $$0^{\circ } \pm 28^{\circ }$$ 0 ∘ ± 28 ∘ at the 68% confidence level. The pure $$\textit{CP}$$ CP -odd hypothesis is disfavoured at a level of 3.4 standard deviations. The results are compatible with the predictions for the Higgs boson in the Standard Model. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024