skip to main content

Search for: All records

Creators/Authors contains: "Phoenix, Gareth K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. Snow is an important driver of ecosystem processes in cold biomes. Snow accumulation determines ground temperature, light conditions, and moisture availability during winter. It also affects the growing season’s start and end, and plant access to moisture and nutrients. Here, we review the current knowledge of the snow cover’s role for vegetation, plant-animal interactions, permafrost conditions, microbial processes, and biogeochemical cycling. We also compare studies of natural snow gradients with snow experimental manipulation studies to assess time scale difference of these approaches. The number of tundra snow studies has increased considerably in recent years, yet we still lack a comprehensive overview of how altered snow conditions will affect these ecosystems. Specifically, we found a mismatch in the timing of snowmelt when comparing studies of natural snow gradients with snow manipulations. We found that snowmelt timing achieved by snow addition and snow removal manipulations (average 7.9 days advance and 5.5 days delay, respectively) were substantially lower than the temporal variation over natural spatial gradients within a given year (mean range 56 days) or among years (mean range 32 days). Differences between snow study approaches need to be accounted for when projecting snow dynamics and their impact on ecosystems in future climates. 
    more » « less
  3. null (Ed.)
    Abstract. Soils in Arctic and boreal ecosystems store twice as much carbon as the atmosphere, a portion of which may be released as high-latitude soils warm. Some of the uncertainty in the timing and magnitude of the permafrost–climate feedback stems from complex interactions between ecosystem properties and soil thermal dynamics. Terrestrial ecosystems fundamentally regulate the response of permafrost to climate change by influencing surface energy partitioning and the thermal properties of soil itself. Here we review how Arctic and boreal ecosystem processes influence thermal dynamics in permafrost soil and how these linkages may evolve in response to climate change. While many of the ecosystem characteristics and processes affecting soil thermal dynamics have been examined individually (e.g., vegetation, soil moisture, and soil structure), interactions among these processes are less understood. Changes in ecosystem type and vegetation characteristics will alter spatial patterns of interactions between climate and permafrost. In addition to shrub expansion, other vegetation responses to changes in climate and rapidly changing disturbance regimes will affect ecosystem surface energy partitioning in ways that are important for permafrost. Lastly, changes in vegetation and ecosystem distribution will lead to regional and global biophysical and biogeochemical climate feedbacks that may compound or offset local impacts on permafrost soils. Consequently, accurate prediction of the permafrost carbon climate feedback will require detailed understanding of changes in terrestrial ecosystem distribution and function, which depend on the net effects of multiple feedback processes operating across scales in space and time. 
    more » « less