skip to main content

Search for: All records

Creators/Authors contains: "Pianetta, Piero"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Single-crystalline nickel-rich cathodes are a rising candidate with great potential for high-energy lithium-ion batteries due to their superior structural and chemical robustness in comparison with polycrystalline counterparts. Within the single-crystalline cathode materials, the lattice strain and defects have significant impacts on the intercalation chemistry and, therefore, play a key role in determining the macroscopic electrochemical performance. Guided by our predictive theoretical model, we have systematically evaluated the effectiveness of regaining lost capacity by modulating the lattice deformation via an energy-efficient thermal treatment at different chemical states. We demonstrate that the lattice structure recoverability is highly dependent on both the cathode composition and the state of charge, providing clues to relieving the fatigued cathode crystal for sustainable lithium-ion batteries. 
    more » « less
  2. Active particles in composite electrodes initially show asynchronous activity that evolves toward synchronous behavior. 
    more » « less
  3. null (Ed.)
  4. Abstract

    Surface lattice reconstruction is commonly observed in nickel-rich layered oxide battery cathode materials, causing unsatisfactory high-voltage cycling performance. However, the interplay of the surface chemistry and the bulk microstructure remains largely unexplored due to the intrinsic structural complexity and the lack of integrated diagnostic tools for a thorough investigation at complementary length scales. Herein, by combining nano-resolution X-ray probes in both soft and hard X-ray regimes, we demonstrate correlative surface chemical mapping and bulk microstructure imaging over a single charged LiNi0.8Mn0.1Co0.1O2(NMC811) secondary particle. We reveal that the sub-particle regions with more micro cracks are associated with more severe surface degradation. A mechanism of mutual modulation between the surface chemistry and the bulk microstructure is formulated based on our experimental observations and finite element modeling. Such a surface-to-bulk reaction coupling effect is fundamentally important for the design of the next generation battery cathode materials.

    more » « less
  5. While Li ion batteries are intended to be operated within a mild temperature window, their structural and chemical complexity could lead to unanticipated local electrochemical events that could cause extreme temperature spikes, which, in turn, could trigger more undesired and sophisticated reactions in the system. Visualizing and understanding the response of battery electrode materials to thermal abuse conditions could potentially offer a knowledge basis for the prevention and mitigation of the safety hazards. Here we show a comprehensive investigation of thermally driven chemomechanical interplay in a Li 0.5 Ni 0.6 Mn 0.2 Co 0.2 O 2 (charged NMC622) cathode material. We report that, at the early stage of the thermal abuse, oxygen release and internal Li migration occur concurrently, and are accompanied by mechanical disintegration at the mesoscale. At the later stage, Li protrusions are observed on the secondary particle surface due to the limited lithium solubility in non-layered lattices. The extraction of both oxygen and lithium from the host material at elevated temperature could influence the chemistry and safety at the cell level via rearrangement of the electron and ion diffusion pathways, reduction of the coulombic efficiency, and/or causing an internal short circuit that could provoke a thermal runaway. 
    more » « less
  6. Abstract

    Understanding the behavior of lithium‐ion batteries (LIBs) under extreme conditions, for example, low temperature, is key to broad adoption of LIBs in various application scenarios. LIBs, poor performance at low temperatures is often attributed to the inferior lithium‐ion transport in the electrolyte, which has motivated new electrolyte development as well as the battery preheating approach that is popular in electric vehicles. A significant irrevocable capacity loss, however, is not resolved by these measures nor well understood. Herein, multiphase, multiscale chemomechanical behaviors in composite LiNixMnyCozO2(NMC,x +y +z = 1) cathodes at extremely low temperatures are systematically elucidated. The low‐temperature storage of LIBs can result in irreversible structural damage in active electrodes, which can negatively impact the subsequent battery cycling performance at ambient temperature. Beside developing electrolytes that have stable performance, designing batteries for use in a wide temperature range also calls for the development of electrode components that are structurally and morphologically robust when the cell is switched between different temperatures.

    more » « less