skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pidhorodetska, Daria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present optical spectroscopy of 710 solar neighborhood stars collected over 20 years to catalog chromospheric activity and search for stellar activity cycles. The California Legacy Survey stars are amenable to exoplanet detection using precise radial velocities, and we present their CaiiH and K time series as a proxy for stellar and chromospheric activity. Using the High Resolution Echelle Spectrometer at Keck Observatory, we measured stellar flux in the cores of the CaiiH and K lines to determineS-values on the Mount Wilson scale and the log ( R HK ) metric, which is comparable across a wide range of spectral types. From the 710 stars, with 52,372 observations, 285 stars were sufficiently sampled to search for stellar activity cycles with periods of 2–25 yr, and 138 stars showed stellar cycles of varying length and amplitude.S-values can be used to mitigate stellar activity in the detection and characterization of exoplanets. We used them to probe stellar dynamos and to place the Sun's magnetic activity into context among solar neighborhood stars. Using precise stellar parameters and time-averaged activity measurements, we found tightly constrained cycle periods as a function of stellar temperature between log ( R HK ) of −4.7 and −4.9, a range of activity in which nearly every star has a periodic cycle. These observations present the largest sample of spectroscopically determined stellar activity cycles to date. 
    more » « less
  2. Abstract Hundreds of exoplanets between 1 and 1.8 times the size of Earth have been discovered on close-in orbits. However, these planets show such a diversity in densities that some appear to be made entirely of iron, while others appear to host gaseous envelopes. To test this diversity in composition, we update the masses of five rocky exoplanets (HD 93963 A b, Kepler-10 b, Kepler-100 b, Kepler-407 b, and TOI-1444 b) and present the confirmation of a new planet (TOI-1011) using 187 high-precision radial velocities from Gemini/MAROON-X and Keck/KPF. Our updated planet masses suggest compositions closer to that of Earth than previous literature values for all planets in our sample. In particular, we report that two previously identified “super-Mercuries” (Kepler-100 b and HD 93963 A b) have lower masses that suggest less iron-rich compositions. We then compare the ratio of iron to rock-building species with the abundance ratios of those elements in their host stars. These updated planet compositions do not suggest a steep relationship between planet and host star compositions, contradictory to previous results, and suggest that planets and host stars have similar abundance ratios. 
    more » « less
    Free, publicly-accessible full text available July 23, 2026
  3. Abstract Exoplanet discoveries have revealed a dramatic diversity of planet sizes across a vast array of orbital architectures. Sub-Neptunes are of particular interest; due to their absence in our own solar system, we rely on demographics of exoplanets to better understand their bulk composition and formation scenarios. Here, we present the discovery and characterization of TOI-1437 b, a sub-Neptune with a 18.84 day orbit around a near-solar analog (M= 1.10 ± 0.10M,R=1.17 ± 0.12R). The planet was detected using photometric data from the Transiting Exoplanet Survey Satellite (TESS) mission and radial velocity (RV) follow-up observations were carried out as a part of the TESS-Keck Survey using both the HIRES instrument at Keck Observatory and the Levy Spectrograph on the Automated Planet Finder telescope. A combined analysis of these data reveal a planet radius ofRp= 2.24 ± 0.23Rand a mass measurement ofMp= 9.6 ± 3.9M). TOI-1437 b is one of few (∼50) known transiting sub-Neptunes orbiting a solar-mass star that has a RV mass measurement. As the formation pathway of these worlds remains an unanswered question, the precise mass characterization of TOI-1437 b may provide further insight into this class of planet. 
    more » « less
  4. null (Ed.)