skip to main content

Search for: All records

Creators/Authors contains: "Pierce, Jeffrey R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Marine emissions of dimethyl sulfide (DMS) and the subsequent formation of its oxidation products methanesulfonic acid (MSA) and sulfuric acid (H2SO4) are well-known natural precursors of atmospheric aerosols, contributing to particle mass and cloud formation over ocean and coastal regions. Despite a long-recognized and well-studied role in the marine troposphere, DMS oxidation chemistry remains a work in progress within many current air quality and climate models, with recent advances exploring heterogeneous chemistry and uncovering previously unknown intermediate species. With the identification of additional DMS oxidation pathways and intermediate species that influence the eventual fate of DMS, it is important to understand the impact of these pathways on the overall sulfate aerosol budget and aerosol size distribution. In this work, we update and evaluate the DMS oxidation mechanism of the chemical transport model GEOS-Chem by implementing expanded DMS oxidation pathways in the model. These updates include gas- and aqueous-phase reactions, the formation of the intermediates dimethyl sulfoxide (DMSO) and methanesulfinic acid (MSIA), and cloud loss and aerosol uptake of the recently quantified intermediate hydroperoxymethyl thioformate (HPMTF). We find that this updated mechanism collectively decreases the global mean surface-layer gas-phase sulfur dioxide (SO2) mixing ratio by 40 % and enhances the sulfate aerosol (SO42-) mixing ratio by 17 %. We further perform sensitivity analyses exploring the contribution of cloud loss and aerosol uptake of HPMTF to the overall sulfur budget. Comparing modeled concentrations to available observations, we find improved biases relative to previous studies. To quantify the impacts of these chemistry updates on global particle size distributions and the mass concentration, we use the TwO-Moment Aerosol Sectional (TOMAS) aerosol microphysics module coupled to GEOS-Chem and find that changes in particle formation and growth affect the size distribution of aerosol. With this new DMS-oxidation scheme, the global annual mean surface-layer number concentration of particles with diameters smaller than 80 nm decreases by 16.8 %, with cloud loss processes related to HPMTF being mostly responsible for this reduction. However, the global annual mean number of particles larger than 80 nm (corresponding to particles capable of acting as cloud condensation nuclei, CCN) increases by 3.8 %, suggesting that the new scheme promotes seasonal particle growth to these sizes.

    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Abstract

    The Arctic warms nearly four times faster than the global average, and aerosols play an increasingly important role in Arctic climate change. In the Arctic, sea salt is a major aerosol component in terms of mass concentration during winter and spring. However, the mechanisms of sea salt aerosol production remain unclear. Sea salt aerosols are typically thought to be relatively large in size but low in number concentration, implying that their influence on cloud condensation nuclei population and cloud properties is generally minor. Here we present observational evidence of abundant sea salt aerosol production from blowing snow in the central Arctic. Blowing snow was observed more than 20% of the time from November to April. The sublimation of blowing snow generates high concentrations of fine-mode sea salt aerosol (diameter below 300 nm), enhancing cloud condensation nuclei concentrations up to tenfold above background levels. Using a global chemical transport model, we estimate that from November to April north of 70° N, sea salt aerosol produced from blowing snow accounts for about 27.6% of the total particle number, and the sea salt aerosol increases the longwave emissivity of clouds, leading to a calculated surface warming of +2.30 W m−2under cloudy sky conditions.

    more » « less
  3. Abstract

    Previous research on the health and air quality impacts of wildfire smoke has largely focused on the impact of smoke on outdoor air quality; however, many people spend a majority of their time indoors. The quality of indoor air on smoke-impacted days is largely unknown. In this analysis, we use publicly available data from an existing large network of low-cost indoor and outdoor fine particulate matter (PM2.5) monitors to quantify the relationship between indoor and outdoor particulate air quality on smoke-impacted days in 2020 across the western United States (US). We also investigate possible regional and socioeconomic trends in this relationship for regions surrounding six major cities in the western US. We find indoor PM2.5concentrations are 82% or 4.2µg m−3(median across all western US indoor monitors for the year 2020; interquartile range, IQR: 2.0–7.2µg m−3) higher on smoke-impacted days compared to smoke-free days. Indoor/outdoor PM2.5ratios show variability by region, particularly on smoke-free days. However, we find the ratio of indoor/outdoor PM2.5is less than 1 (i.e. indoor concentrations lower than outdoor) at nearly all indoor-outdoor monitor pairs on smoke-impacted days. Although typically lower than outdoor concentrations on smoke-impacted days, we find that on heavily smoke-impacted days (outdoor PM2.5> 55µg m−3), indoor PM2.5concentrations can exceed the 35µg m−324 h outdoor standard set by the US Environmental Protection Agency. Further, total daily-mean indoor PM2.5concentrations increase by 2.1µg m−3with every 10µg m−3increase in daily-mean outdoor PM2.5.(median of statistically significant linear regression slopes across all western US monitor pairs; IQR: 1.0–4.3µg m−3) on smoke-impacted days. These results show that for indoor environments in the western US included in our analysis, remaining indoors during smoke events is currently an effective, but limited, strategy to reduce PM2.5exposure.

    more » « less
  4. Abstract. The impact of biomass burning (BB) on the atmospheric burden of volatile organic compounds (VOCs) is highly uncertain. Here we apply the GEOS-Chemchemical transport model (CTM) to constrain BB emissions in the western USA at ∼ 25 km resolution. Across three BB emission inventorieswidely used in CTMs, the inventory–inventory comparison suggests that the totals of 14 modeled BB VOC emissions in the western USA agree with eachother within 30 %–40 %. However, emissions for individual VOCs can differ by a factor of 1–5, driven by the regionally averaged emissionratios (ERs, reflecting both assigned ERs for specific biome and vegetation classifications) across the three inventories. We further evaluate GEOS-Chemsimulations with aircraft observations made during WE-CAN (Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption and Nitrogen) andFIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality) field campaigns. Despite being driven by different global BBinventories or applying various injection height assumptions, the model–observation comparison suggests that GEOS-Chem simulations underpredictobserved vertical profiles by a factor of 3–7. The model shows small to no bias for most species in low-/no-smoke conditions. We thus attribute thenegative model biases mostly to underestimated BB emissions in these inventories. Tripling BB emissions in the model reproduces observed verticalprofiles for primary compounds, i.e., CO, propane, benzene, and toluene. However, it shows no to less significant improvements for oxygenatedVOCs, particularly for formaldehyde, formic acid, acetic acid, and lumped ≥ C3 aldehydes, suggesting the model is missing secondarysources of these compounds in BB-impacted environments. The underestimation of primary BB emissions in inventories is likely attributable tounderpredicted amounts of effective dry matter burned, rather than errors in fire detection, injection height, or ERs, as constrained by aircraftand ground measurements. We cannot rule out potential sub-grid uncertainties (i.e., not being able to fully resolve fire plumes) in the nestedGEOS-Chem which could explain the negative model bias partially, though back-of-the-envelope calculation and evaluation using longer-term groundmeasurements help support the argument of the dry matter burned underestimation. The total ERs of the 14 BB VOCs implemented in GEOS-Chem onlyaccount for half of the total 161 measured VOCs (∼ 75 versus 150 ppb ppm−1). This reveals a significant amount of missing reactiveorganic carbon in widely used BB emission inventories. Considering both uncertainties in effective dry matter burned (× 3) and unmodeledVOCs (× 2), we infer that BB contributed to 10 % in 2019 and 45 % in 2018 (240 and 2040 Gg C) of the total VOC primaryemission flux in the western USA during these two fire seasons, compared to only 1 %–10 % in the standard GEOS-Chem. 
    more » « less
  5. Abstract

    Phase One of the Transportation and Transformation of Ammonia (TRANS2Am) field campaign took place in northeastern Colorado during the summer of 2021. One of the goals of TRANS2Am was to measure ammonia (NH3) emissions from cattle feedlots and dairies. Most of these animal husbandry facilities are co‐located within oil and gas development, an important source of methane (CH4) and ethane (C2H6) in the region. Phase One of TRANS2Am included 12 near‐source research flights. We present estimates of NH3emissions ratios with respect to CH4(NH3EmR), with and without correction of CH4from oil and gas, for 29 feedlots and dairies in the region. The data shows larger emissions ratios than previously reported in the literature with a large range of values (i.e., 0.1–2.6 ppbv ppbv−1). Facilities housing cattle and dairy had a mean (std) of 1.20 (0.63) and 0.29 (0.08) ppbv ppbv−1, respectively. We also found that only 15% of the total ammonia (NHx) is in the particle phase (i.e., ) near major sources during the warm summertime months. We examined the evolution of NH3in one plume that was sampled at different distances and altitudes up to 25 km downwind and estimated the NH3lifetime against deposition and partitioning to the particle phase to be 87–120 min. Finally, we calculated estimates of NH3emission rates from four optimally sampled facilities. These ranged from 4 to 29 g NH3 · h−1 · hd−1.

    more » « less
  6. Abstract. Accurate representation of aerosol optical properties is essential for the modeling and remote sensing of atmospheric aerosols. Although aerosol optical properties are strongly dependent upon the aerosol size distribution, the use of detailed aerosol microphysics schemes in global atmospheric models is inhibited by associated computational demands. Computationally efficient parameterizations for aerosol size are needed. Inthis study, airborne measurements over the United States (DISCOVER-AQ) andSouth Korea (KORUS-AQ) are interpreted with a global chemical transport model (GEOS-Chem) to investigate the variation in aerosol size when organicmatter (OM) and sulfate–nitrate–ammonium (SNA) are the dominant aerosol components. The airborne measurements exhibit a strong correlation (r=0.83) between dry aerosol size and the sum of OM and SNA mass concentration (MSNAOM). A global microphysical simulation(GEOS-Chem-TOMAS) indicates that MSNAOM and theratio between the two components (OM/SNA) are the major indicators for SNA and OM dry aerosol size. A parameterization of the dry effective radius (Reff) for SNA and OM aerosol is designed to represent the airborne measurements (R2=0.74; slope = 1.00) and the GEOS-Chem-TOMAS simulation (R2=0.72; slope = 0.81). When applied in the GEOS-Chem high-performance model, this parameterization improves the agreement between the simulated aerosol optical depth (AOD) and the ground-measured AOD from the Aerosol Robotic Network (AERONET; R2 from 0.68 to 0.73 and slope from 0.75 to 0.96). Thus, this parameterization offers a computationally efficient method to represent aerosol size dynamically.

    more » « less
  7. Wildfires are an important atmospheric source of primary organic aerosol (POA) and precursors for secondary organic aerosol (SOA) at regional and global scales. However, there are large uncertainties surrounding the emissions and physicochemical processes that control the transformation, evolution, and properties of POA and SOA in large wildfire plumes. We develop a plume version of a kinetic model to simulate the dilution, oxidation chemistry, thermodynamic properties, and microphysics of organic aerosol (OA) in wildfire smoke. The model is applied to study the in-plume OA in four large wildfire smoke plumes intercepted during an aircraft-based field campaign in summer 2018 in the western United States. Based on estimates of dilution and oxidant concentrations before the aircraft first intercepted the plumes, we simulate the OA evolution from very close to the fire to several hours downwind. Our model results and sensitivity simulations suggest that dilution-driven evaporation of POA and simultaneous photochemical production of SOA are likely to explain the observed evolution in OA mass with physical age. The model, however, substantially underestimates the change in the oxygen-to-carbon ratio of the OA compared to measurements. In addition, we show that the rapid chemical transformation within the first hour after emission is driven by higher-than-ambient OH concentrations (3×10 6 -10 7 molecules cm -3 ) and the slower evolution over the next several hours is a result of lower-than-ambient OH concentrations (<10 6 molecules cm -3 ) and depleted SOA precursors. Model predictions indicate that the OA measured several hours downwind of the fire is still dominated by POA but with an SOA fraction that varies between 30% and 56% of the total OA. Semivolatile, heterocyclic, and oxygenated aromatic compounds, in that order, were found to contribute substantially (>90%) to SOA formation. Future work needs to focus on better understanding the dynamic evolution closer to the fire and resolving the rapid change in the oxidation state of OA with physical age. 
    more » « less
  8. null (Ed.)