skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pinto, Nicholas_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Charge transport in ferroelectric (FE) gated graphene far from the Dirac point (DP) was studied in the temperature range 300 K < T < 350 K. A non-monotonic/monotonic/non-monotonic behavior in the conductivity [σ(T)] was observed as one moved away from the DP. As the gate polarization increased, additional impurity charges were compensated, which reduced charge scattering. The uncompensated charges doped graphene and σ(T) switched to a monotonic increase with increasing T. However, far from the DP, the polarization reached saturation, which resulted in still lower impurity charge scattering. The carrier concentration increased, and a non-monotonic response in σ(T) reappeared, which was attributed to phonon scattering. A theoretical model is presented that combined impurity charge and phonon scattering conduction mechanisms. The top gate polarizable FE provided a novel approach to investigate charge transport in graphene via controlled compensation of impurity charges, and in the process revealed non-monotonic behavior in σ(T) not previously seen in SiO2 back gated graphene devices. 
    more » « less
  2. Charge transport near the Dirac point (DP) was investigated in graphene using ferroelectric (FE) gating in the temperature range of 300 < T < 350 K. We observed that the conductivity (σ) near the DP had a positive temperature gradient that switched to a negative temperature gradient with increasing temperature. The switch to a negative temperature gradient shifted to higher temperatures and gradually weakened upon moving away from the DP. Impurity charge compensation via polarization of the FE together with a temperature-dependent graphene–impurity charge separation was proposed as being responsible for the non-monotonicity in σ(T). A self-consistent theory for graphene transport with impurity charge scattering and phonon scattering was used to analyze the results. Non-monotonic charge transport was also observed in the temperature dependence of the residual conductivity (σr). Theoretical analysis of both σ and σr revealed a temperature independent contribution of ∼1.16e2h that is probably inherent to pristine graphene. 
    more » « less
  3. CVD grown MoSe2 monolayers were electrically characterized at room temperature in a field effect transistor (FET) configuration using an ionic liquid (IL) as the gate dielectric. During the growth, instead of using MoO3 powder, ammonium heptamolybdate was used for better Mo control of the source and sodium cholate added for lager MoSe2 growth areas. In addition, a high specific capacitance (∼7 μF/cm2) IL was used as the gate dielectric to significantly reduce the operating voltage. The device exhibited ambipolar charge transport at low voltages with enhanced parameters during n- and p-FET operation. IL gating thins the Schottky barrier at the metal/semiconductor interface permitting efficient charge injection into the channel and reduces the effects of contact resistance on device performance. The large specific capacitance of the IL was also responsible for a much higher induced charge density compared to the standard SiO2 dielectric. The device was successfully tested as an inverter with a gain of ∼2. Using a common metal for contacts simplifies fabrication of this ambipolar device, and the possibility of radiative recombination of holes and electrons could further extend its use in low power optoelectronic applications. 
    more » « less