skip to main content

Search for: All records

Creators/Authors contains: "Pitt, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 7, 2022
  2. We report a precision measurement of the parity-violating asymmetry APV in the elastic scattering of longitudinally polarized electrons from 208Pb. We measure APV=550±16(stat)±8(syst) parts per billion, leading to an extraction of the neutral weak form factor FW(Q2=0.00616  GeV2)=0.368±0.013. Combined with our previous measurement, the extracted neutron skin thickness is Rn−Rp=0.283±0.071  fm. The result also yields the first significant direct measurement of the interior weak density of 208Pb: ρ0W=−0.0796±0.0036(exp)±0.0013(theo)  fm−3 leading to the interior baryon density ρ0b=0.1480±0.0036(exp)±0.0013(theo)  fm−3. The measurement accurately constrains the density dependence of the symmetry energy of nuclear matter near saturation density, with implications for the size and composition of neutron stars.
  3. A bstract A search for a heavy resonance decaying into a top quark and a W boson in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV is presented. The data analyzed were recorded with the CMS detector at the LHC and correspond to an integrated luminosity of 138 fb − 1 . The top quark is reconstructed as a single jet and the W boson, from its decay into an electron or muon and the corresponding neutrino. A top quark tagging technique based on jet clustering with a variable distance parameter and simultaneous jet grooming is used tomore »identify jets from the collimated top quark decay. The results are interpreted in the context of two benchmark models, where the heavy resonance is either an excited bottom quark b ∗ or a vector-like quark B. A statistical combination with an earlier search by the CMS Collaboration in the all-hadronic final state is performed to place upper cross section limits on these two models. The new analysis extends the lower range of resonance mass probed from 1.4 down to 0.7 TeV. For left-handed, right-handed, and vector-like couplings, b ∗ masses up to 3.0, 3.0, and 3.2 TeV are excluded at 95% confidence level, respectively. The observed upper limits represent the most stringent constraints on the b ∗ model to date.« less
    Free, publicly-accessible full text available April 1, 2023