skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pjanka, Patryk"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Questions regarding the energy dissipation in astrophysical jets remain open to date, despite numerous attempts to limit the diversity of the models. Some of the most popular models assume that energy is transferred to particles via internal shocks, which develop as a consequence of the nonuniform velocity of the jet matter. In this context, we study the structure and energy deposition of colliding plasma shells, focusing our attention on the case of initially inhomogeneous shells. This leads to the formation of distorted (corrugated) shock fronts—a setup that has recently been shown to revive particle acceleration in relativistic magnetized perpendicular shocks. Our study shows that the radiative power of the far downstream of nonrelativistic magnetized perpendicular shocks is moderately enhanced with respect to the flat-shock cases. Based on the decay rate of the downstream magnetic field, we make predictions for multiwavelength polarization properties. 
    more » « less