We present stellar parameters and chemical abundances of 47 elements detected in the bright (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract V = 11.63) very metal-poor ([Fe/H] = −2.20 ± 0.12) star 2MASS J22132050−5137385. We observed this star using the Magellan Inamori Kyocera Echelle spectrograph as part of ongoing work by theR -Process Alliance. The spectrum of 2MASS J22132050−5137385 exhibits unusually strong lines of elements heavier than the iron group, and our analysis reveals that these elements were produced by rapid neutron-capture (r -process) nucleosynthesis. We derive a europium enhancement, [Eu/Fe] = +2.45 ± 0.08, that is higher than any otherr -process-enhanced star known at present. This star is only the eighthr -process-enhanced star where both thorium and uranium are detected, and we calculate the age of ther -process material, 13.6 ± 2.6 Gyr, from the radioactive decay of these isotopes. This star contains relatively large enhancements of elements that may be produced as transuranic fission fragments, and we propose a new method using this characteristic to assess ther -process yields and gas dilution in samples ofr -process-enhanced stars. Assuming a canonical baryonic minihalo mass of 106M ⊙and a 1% metal retention rate, this star formed in a cloud of only ∼600M ⊙. We conclude that 2MASS J22132050−5137385 exhibits a high level ofr -process enhancement because it formed in an environment where ther -process material was less diluted than average. -
Abstract We present the discovery of 2MASS J05241392−0336543 (hereafter J0524−0336), a very metal-poor ([Fe/H] = −2.43 ± 0.16), highly
r -process-enhanced ([Eu/Fe] = +1.34 ± 0.10) Milky Way halo field red giant star, with an ultrahigh Li abundance ofA (Li, 3D, NLTE) = 6.15 ± 0.25 and [Li/Fe] = +7.64 ± 0.25, respectively. This makes J0524−0336 the most lithium-enhanced giant star discovered to date. We present a detailed analysis of the star’s atmospheric stellar parameters and chemical abundance determinations. Additionally, we detect indications of infrared excess, as well as observe variable emission in the wings of the Hα absorption line across multiple epochs, indicative of a potential enhanced mass-loss event with possible outflows. Our analysis reveals that J0524−0336 lies either between the bump and the tip of the red giant branch (RGB), or on the early asymptotic giant branch (e-AGB). We investigate the possible sources of lithium enrichment in J0524−0336, including both internal and external sources. Based on current models and on the observational evidence we have collected, our study shows that J0524−0336 may be undergoing the so-called lithium flash that is expected to occur in low-mass stars when they reach the RGB bump and/or the e-AGB. -
ABSTRACT RR Lyrae stars play a central role in tracing phase-space structures within the Milky Way because they are easy to identify, are relatively luminous, and are found in large numbers in the Galactic bulge, disc, and halo. In this work, we present a new set of spectroscopic metallicity calibrations that use the equivalent widths of the Ca ii K and Balmer H γ and H δ lines to calculate metallicity values from low-resolution spectra. This builds on an earlier calibration from Layden by extending the range of equivalent widths which map between Ca ii K and the Balmer lines. We have developed the software rrlfe to apply this calibration to spectra in a consistent, reproducible, and extensible manner. This software is open-source and available to the community. The calibration can be updated with additional data sets in the future.