Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this work we discuss the calculation of the spin-density matrix from fundamental spin principles as implemented in the Columbus Program System employing the graphical unitary group approach (GUGA). First, a general equation for the spin-density matrix is derived in terms of the one- and two-particle reduced density matrices, quantities that are spin-independent and readily available within the GUGA formalism. Next, the evaluation of this equation using the Shavitt loop values is discussed. Finally, the spatially resolved counterpart of the spin-density matrix, the spin distribution, is calculated for the phenalenyl radical and structures produced by heteroatoms with mono- and di-substitutions. The physical meaning of the spin-density along with its computational description using various methods is discussed putting special emphasis on negative contributions to the spin-density and their quantification via a spin-promotion index.more » « less