skip to main content

Search for: All records

Creators/Authors contains: "Plazas, A A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract We present morphological classifications of ∼27 million galaxies from the Dark Energy Survey (DES) Data Release 1 (DR1) using a supervised deep learning algorithm. The classification scheme separates: (a) early-type galaxies (ETGs) from late-types (LTGs), and (b) face-on galaxies from edge-on. Our Convolutional Neural Networks (CNNs) are trained on a small subset of DES objects with previously known classifications. These typically have mr ≲ 17.7mag; we model fainter objects to mr < 21.5 mag by simulating what the brighter objects with well determined classifications would look like if they were at higher redshifts. The CNNs reach 97% accuracy tomore »mr < 21.5 on their training sets, suggesting that they are able to recover features more accurately than the human eye. We then used the trained CNNs to classify the vast majority of the other DES images. The final catalog comprises five independent CNN predictions for each classification scheme, helping to determine if the CNN predictions are robust or not. We obtain secure classifications for ∼ 87% and 73% of the catalog for the ETG vs. LTG and edge-on vs. face-on models, respectively. Combining the two classifications (a) and (b) helps to increase the purity of the ETG sample and to identify edge-on lenticular galaxies (as ETGs with high ellipticity). Where a comparison is possible, our classifications correlate very well with Sérsic index (n), ellipticity (ε) and spectral type, even for the fainter galaxies. This is the largest multi-band catalog of automated galaxy morphologies to date.« less
  3. ABSTRACT We perform a cross validation of the cluster catalogue selected by the red-sequence Matched-filter Probabilistic Percolation algorithm (redMaPPer) in Dark Energy Survey year 1 (DES-Y1) data by matching it with the Sunyaev–Zel’dovich effect (SZE) selected cluster catalogue from the South Pole Telescope SPT-SZ survey. Of the 1005 redMaPPer selected clusters with measured richness $\hat{\lambda }\gt 40$ in the joint footprint, 207 are confirmed by SPT-SZ. Using the mass information from the SZE signal, we calibrate the richness–mass relation using a Bayesian cluster population model. We find a mass trend λ ∝ MB consistent with a linear relation (B ∼ 1),more »no significant redshift evolution and an intrinsic scatter in richness of σλ = 0.22 ± 0.06. By considering two error models, we explore the impact of projection effects on the richness–mass modelling, confirming that such effects are not detectable at the current level of systematic uncertainties. At low richness SPT-SZ confirms fewer redMaPPer clusters than expected. We interpret this richness dependent deficit in confirmed systems as due to the increased presence at low richness of low-mass objects not correctly accounted for by our richness-mass scatter model, which we call contaminants. At a richness $\hat{\lambda }=40$, this population makes up ${\gt}12{{\ \rm per\ cent}}$ (97.5 percentile) of the total population. Extrapolating this to a measured richness $\hat{\lambda }=20$ yields ${\gt}22{{\ \rm per\ cent}}$ (97.5 percentile). With these contamination fractions, the predicted redMaPPer number counts in different plausible cosmologies are compatible with the measured abundance. The presence of such a population is also a plausible explanation for the different mass trends (B ∼ 0.75) obtained from mass calibration using purely optically selected clusters. The mean mass from stacked weak lensing (WL) measurements suggests that these low-mass contaminants are galaxy groups with masses ∼3–5 × 1013 M⊙ which are beyond the sensitivity of current SZE and X-ray surveys but a natural target for SPT-3G and eROSITA.« less
  4. ABSTRACT Determining the distribution of redshifts of galaxies observed by wide-field photometric experiments like the Dark Energy Survey (DES) is an essential component to mapping the matter density field with gravitational lensing. In this work we describe the methods used to assign individual weak lensing source galaxies from the DES Year 3 Weak Lensing Source Catalogue to four tomographic bins and to estimate the redshift distributions in these bins. As the first application of these methods to data, we validate that the assumptions made apply to the DES Y3 weak lensing source galaxies and develop a full treatment of systematicmore »uncertainties. Our method consists of combining information from three independent likelihood functions: self-organizing map p(z) (sompz), a method for constraining redshifts from galaxy photometry; clustering redshifts (WZ), constraints on redshifts from cross-correlations of galaxy density functions; and shear ratios (SRs), which provide constraints on redshifts from the ratios of the galaxy-shear correlation functions at small scales. Finally, we describe how these independent probes are combined to yield an ensemble of redshift distributions encapsulating our full uncertainty. We calibrate redshifts with combined effective uncertainties of σ〈z〉 ∼ 0.01 on the mean redshift in each tomographic bin.« less
  5. ABSTRACT In time-delay cosmography, three of the key ingredients are (1) determining the velocity dispersion of the lensing galaxy, (2) identifying galaxies and groups along the line of sight with sufficient proximity and mass to be included in the mass model, and (3) estimating the external convergence κext from less massive structures that are not included in the mass model. We present results on all three of these ingredients for two time-delay lensed quad quasar systems, DES J0408–5354 and WGD 2038–4008 . We use the Gemini, Magellan, and VLT telescopes to obtain spectra to both measure the stellar velocity dispersions of the main lensingmore »galaxies and to identify the line-of-sight galaxies in these systems. Next, we identify 10 groups in DES J0408–5354 and two groups in WGD 2038–4008 using a group-finding algorithm. We then identify the most significant galaxy and galaxy-group perturbers using the ‘flexion shift’ criterion. We determine the probability distribution function of the external convergence κext for both of these systems based on our spectroscopy and on the DES-only multiband wide-field observations. Using weighted galaxy counts, calibrated based on the Millennium Simulation, we find that DES J0408–5354 is located in a significantly underdense environment, leading to a tight (width $\sim 3{{\ \rm per\ cent}}$), negative-value κext distribution. On the other hand, WGD 2038–4008 is located in an environment of close to unit density, and its low source redshift results in a much tighter κext of $\sim 1{{\ \rm per\ cent}}$, as long as no external shear constraints are imposed.« less
  6. ABSTRACT We introduce a new software package for modelling the point spread function (PSF) of astronomical images, called piff (PSFs In the Full FOV), which we apply to the first three years (known as Y3) of the Dark Energy Survey (DES) data. We describe the relevant details about the algorithms used by piff to model the PSF, including how the PSF model varies across the field of view (FOV). Diagnostic results show that the systematic errors from the PSF modelling are very small over the range of scales that are important for the DES Y3 weak lensing analysis. In particular,more »the systematic errors from the PSF modelling are significantly smaller than the corresponding results from the DES year one (Y1) analysis. We also briefly describe some planned improvements to piff that we expect to further reduce the modelling errors in future analyses.« less
  7. ABSTRACT For ground-based optical imaging with current CCD technology, the Poisson fluctuations in source and sky background photon arrivals dominate the noise budget and are readily estimated. Another component of noise, however, is the signal from the undetected population of stars and galaxies. Using injection of artifical galaxies into images, we demonstrate that the measured variance of galaxy moments (used for weak gravitational lensing measurements) in Dark Energy Survey (DES) images is significantly in excess of the Poisson predictions, by up to 30 per cent, and that the background sky levels are overestimated by current software. By cross-correlating distinct images of ‘empty’more »sky regions, we establish that there is a significant image noise contribution from undetected static sources (US), which, on average, are mildly resolved at DES resolution. Treating these US as a stationary noise source, we compute a correction to the moment covariance matrix expected from Poisson noise. The corrected covariance matrix matches the moment variances measured on the injected DES images to within 5 per cent. Thus, we have an empirical method to statistically account for US in weak lensing measurements, rather than requiring extremely deep sky simulations. We also find that local sky determinations can remove most of the bias in flux measurements, at a small penalty in additional, but quantifiable, noise.« less