skip to main content

Search for: All records

Creators/Authors contains: "Plummer, David M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The observing system design of multidisciplinary fieldmeasurements involves a variety of considerations on logistics, safety, andscience objectives. Typically, this is done based on investigator intuitionand designs of prior field measurements. However, there is potential forconsiderable increases in efficiency, safety, and scientific success byintegrating numerical simulations in the design process. Here, we present anovel numerical simulation–environmental response function (NS–ERF)approach to observing system simulation experiments that aidssurface–atmosphere synthesis at the interface of mesoscale and microscalemeteorology. In a case study we demonstrate application of the NS–ERFapproach to optimize the Chequamegon Heterogeneous Ecosystem Energy-balanceStudy Enabled by a High-density Extensive Array of Detectors 2019(CHEESEHEAD19). During CHEESEHEAD19 pre-field simulation experiments, we considered theplacement of 20 eddy covariance flux towers, operations for 72 h oflow-altitude flux aircraft measurements, and integration of various remotesensing data products. A 2 h high-resolution large eddy simulationcreated a cloud-free virtual atmosphere for surface and meteorologicalconditions characteristic of the field campaign domain and period. Toexplore two specific design hypotheses we super-sampled this virtualatmosphere as observed by 13 different yet simultaneous observing systemdesigns consisting of virtual ground, airborne, and satellite observations.We then analyzed these virtual observations through ERFs to yield an optimalaircraft flight strategy for augmenting a stratified random flux towernetwork in combination with satellitemore »retrievals. We demonstrate how the novel NS–ERF approach doubled CHEESEHEAD19'spotential to explore energy balance closure and spatial patterning scienceobjectives while substantially simplifying logistics. Owing to its modularextensibility, NS–ERF lends itself to optimizing observing system designs alsofor natural climate solutions, emission inventory validation, urban airquality, industry leak detection, and multi-species applications, among otheruse cases.« less
  2. Abstract

    During the summer of 2018, the upward-pointing Wyoming Cloud Lidar (WCL) was deployed on board the University of Wyoming King Air (UWKA) research aircraft for the Biomass Burning Flux Measurements of Trace Gases and Aerosols (BB-FLUX) field campaign. This paper describes the generation of calibrated attenuated backscatter coefficients and aerosol extinction coefficients from the WCL measurements. The retrieved aerosol extinction coefficients at the flight level strongly correlate (correlation coefficient, rr > 0.8) with in situ aerosol concentration and carbon monoxide (CO) concentration, providing a first-order estimate for converting WCL extinction coefficients into vertically resolved CO and aerosol concentration within wildfire smoke plumes. The integrated CO column concentrations from the WCL data in nonextinguished profiles also correlate (rr = 0.7) with column measurements by the University of Colorado Airborne Solar Occultation Flux instrument, indicating the validity of WCL-derived extinction coefficients. During BB-FLUX, the UWKA sampled smoke plumes from more than 20 wildfires during 35 flights over the western United States. Seventy percent of flight time was spent below 3 km above ground level (AGL) altitude, although the UWKA ascended up to 6 km AGL to sample the top of some deep smoke plumes. The upward-pointing WCL observed a nearly equalmore »amount of thin and dense smoke below 2 km and above 5 km due to the flight purpose of targeted fresh fire smoke. Between 2 and 5 km, where most of the wildfire smoke resided, the WCL observed slightly more thin smoke than dense smoke due to smoke spreading. Extinction coefficients in dense smoke were 2–10 times stronger, and dense smoke tended to have larger depolarization ratio, associated with irregular aerosol particles.

    « less
  3. null (Ed.)
    Abstract The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science Foundation project based on an intensive field campaign that occurred from June to October 2019. The purpose of the study is to examine how the atmospheric boundary layer (ABL) responds to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface energy fluxes, with the aim to improve model–data comparison and integration. To address these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was deployed over a 10 km × 10 km domain of a heterogeneous forest ecosystem in the Chequamegon–Nicolet National Forest in northern Wisconsin, United States, centered on an existing 447-m tower that anchors an AmeriFlux/NOAA supersite (US-PFa/WLEF). The project deployed one of the world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. This tower EC network was coupled with spatial measurements of EC fluxes from aircraft; maps of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements ofmore »plant productivity, phenology, and physiology; and atmospheric profiles of wind, water vapor, and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and radiosondes. These observations are being used with large-eddy simulation and scaling experiments to better understand submesoscale processes and improve formulations of subgrid-scale processes in numerical weather and climate models.« less