skip to main content

Search for: All records

Creators/Authors contains: "Pnyushkov, Andrey V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Tidal and wind-driven near-inertial currents play a vital role in the changing Arctic climate and the marine ecosystems. We compiled 429 available moored current observations taken over the last two decades throughout the Arctic to assemble a pan-Arctic atlas of tidal band currents. The atlas contains different tidal current products designed for the analysis of tidal parameters from monthly to inter-annual time scales. On shorter time scales, wind-driven inertial currents cannot be analytically separated from semidiurnal tidal constituents. Thus, we include 10–30 h band-pass filtered currents, which include all semidiurnal and diurnal tidal constituents as well as wind-driven inertial currents for the analysis of high-frequency variability of ocean dynamics. This allows for a wide range of possible uses, including local case studies of baroclinic tidal currents, assessment of long-term trends in tidal band kinetic energy and Arctic-wide validation of ocean circulation models. This atlas may also be a valuable tool for resource management and industrial applications such as fisheries, navigation and offshore construction.

    more » « less
  2. Abstract A 15-yr duration record of mooring observations from the eastern (>70°E) Eurasian Basin (EB) of the Arctic Ocean is used to show and quantify the recently increased oceanic heat flux from intermediate-depth (~150–900 m) warm Atlantic Water (AW) to the surface mixed layer and sea ice. The upward release of AW heat is regulated by the stability of the overlying halocline, which we show has weakened substantially in recent years. Shoaling of the AW has also contributed, with observations in winter 2017–18 showing AW at only 80 m depth, just below the wintertime surface mixed layer, the shallowest in our mooring records. The weakening of the halocline for several months at this time implies that AW heat was linked to winter convection associated with brine rejection during sea ice formation. This resulted in a substantial increase of upward oceanic heat flux during the winter season, from an average of 3–4 W m −2 in 2007–08 to >10 W m −2 in 2016–18. This seasonal AW heat loss in the eastern EB is equivalent to a more than a twofold reduction of winter ice growth. These changes imply a positive feedback as reduced sea ice cover permits increased mixing, augmenting the summer-dominated ice-albedo feedback. 
    more » « less
  3. Abstract

    A 15‐year (2004–2018) record of mooring observations from the upper 50 m of the ocean in the eastern Eurasian Basin reveals increased current speeds and vertical shear, associated with an increasing coupling between wind, ice, and the upper ocean over 2004–2018, particularly in summer. Substantial increases in current speeds and shears in the upper 50 m are dominated by a two times amplification of currents in the semidiurnal band, which includes tides and wind‐forced near‐inertial oscillations. For the first time the strengthened upper ocean currents and shear are observed to coincide with weakening stratification. This coupling links the Atlantic Water heat to the sea ice, a consequence of which would be reducing regional sea ice volume. These results point to a new positive feedback mechanism in which reduced sea ice extent facilitates more energetic inertial oscillations and associated upper‐ocean shear, thus leading to enhanced ventilation of the Atlantic Water.

    more » « less