Neutrinoless double beta decay is one of the most sensitive probes for new physics beyond the Standard Model of particle physics. One of the isotopes under investigation is, which would double beta decay into. Detecting the singledaughter provides a sort of ultimate tool in the discrimination against backgrounds. Previous work demonstrated the ability to perform single atom imaging of Ba atoms in a single-vacancy site of a solid xenon matrix. In this paper, the effort to identify signal from individual barium atoms is extended to Ba atoms in a hexa-vacancy site in the matrix and is achieved despite increased photobleaching in this site. Abrupt fluorescence turn-off of a single Ba atom is also observed. Significant recovery of fluorescence signal lost through photobleaching is demonstrated upon annealing of Ba deposits in the Xe ice. Following annealing, it is observed that Ba atoms in the hexa-vacancy site exhibit antibleaching while Ba atoms in the tetra-vacancy site exhibit bleaching. This may be evidence for a matrix site transfer upon laser excitation. Our findings offer a path of continued research toward tagging of Ba daughters in all significant sites in solid xenon.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Published by the American Physical Society 2024 Free, publicly-accessible full text available November 1, 2025 -
Electron-neutrino charged-current interactions with xenon nuclei were modeled in the nEXO neutrinoless double-decay detector (metric ton, 90%, 10%) to evaluate its sensitivity to supernova neutrinos. Predictions for event rates and detectable signatures were modeled using the Model of Argon Reaction Low Energy Yields (MARLEY) event generator. We find good agreement between MARLEY’s predictions and existing theoretical calculations of the inclusive cross sections at supernova neutrino energies. The interactions modeled by MARLEY were simulated within the nEXO simulation framework and were run through an example reconstruction algorithm to determine the detector’s efficiency for reconstructing these events. The simulated data, incorporating the detector response, were used to study the ability of nEXO to reconstruct the incident electron-neutrino spectrum and these results were extended to a larger xenon detector of the same isotope enrichment. We estimate that nEXO will be able to observe electron-neutrino interactions with xenon from supernovae as far as 5–8 kpc from Earth, while the ability to reconstruct incident electron-neutrino spectrum parameters from observed interactions in nEXO is limited to closer supernovae.
Published by the American Physical Society 2024 Free, publicly-accessible full text available November 1, 2025 -
Abstract The stability of a dark matter detector on the timescale of a few years is a key requirement due to the large exposure needed to achieve a competitive sensitivity. It is especially crucial to enable the detector to potentially detect any annual event rate modulation, an expected dark matter signature. In this work, we present the performance history of the DarkSide-50 dual-phase argon time projection chamber over its almost three-year low-radioactivity argon run. In particular, we focus on the electroluminescence signal that enables sensitivity to sub-keV energy depositions. The stability of the electroluminescence yield is found to be better than 0.5%. Finally, we show the temporal evolution of the observed event rate around the sub-keV region being consistent to the background prediction.
Free, publicly-accessible full text available May 1, 2025 -
Abstract The search for neutrino events in correlation with gravitational wave (GW) events for three observing runs (O1, O2 and O3) from 09/2015 to 03/2020 has been performed using the Borexino data-set of the same period. We have searched for signals of neutrino-electron scattering and inverse beta-decay (IBD) within a time window of
s centered at the detection moment of a particular GW event. The search was done with three visible energy thresholds of 0.25, 0.8 and 3.0 MeV. Two types of incoming neutrino spectra were considered: the mono-energetic line and the supernova-like spectrum. GW candidates originated by merging binaries of black holes (BHBH), neutron stars (NSNS) and neutron star and black hole (NSBH) were analyzed separately. Additionally, the subset of most intensive BHBH mergers at closer distances and with larger radiative mass than the rest was considered. In total, follow-ups of 74 out of 93 gravitational waves reported in the GWTC-3 catalog were analyzed and no statistically significant excess over the background was observed. As a result, the strongest upper limits on GW-associated neutrino and antineutrino fluences for all flavors ($$\pm \, 1000$$ ) at the level$$\nu _e, \nu _\mu , \nu _\tau $$ have been obtained in the 0.5–5 MeV neutrino energy range.$$10^9{-}10^{15}~\textrm{cm}^{-2}\,\textrm{GW}^{-1}$$ -
Abstract A new search for two-neutrino double-beta (2
νββ ) decay of136Xe to the excited state of136Ba is performed with the full EXO-200 dataset. A deep learning-based convolutional neural network is used to discriminate signal from background events. Signal detection efficiency is increased relative to previous searches by EXO-200 by more than a factor of two. With the addition of the Phase II dataset taken with an upgraded detector, the median 90% confidence level half-life sensitivity of 2νββ decay to the state of136Ba is yr using a total136Xe exposure of 234.1 kg yr. No statistically significant evidence for 2νββ decay to the state is observed, leading to a lower limit of yr at 90% confidence level, improved by 70% relative to the current world's best constraint. -
Abstract Generative Adversarial Networks trained on samples of simulated or actual events have been proposed as a way of generating large simulated datasets at a reduced computational cost. In this work, a novel approach to perform the simulation of photodetector signals from the time projection chamber of the EXO-200 experiment is demonstrated. The method is based on a Wasserstein Generative Adversarial Network — a deep learning technique allowing for implicit non-parametric estimation of the population distribution for a given set of objects. Our network is trained on real calibration data using raw scintillation waveforms as input. We find that it is able to produce high-quality simulated waveforms an order of magnitude faster than the traditional simulation approach and, importantly, generalize from the training sample and discern salient high-level features of the data. In particular, the network correctly deduces position dependency of scintillation light response in the detector and correctly recognizes dead photodetector channels. The network output is then integrated into the EXO-200 analysis framework to show that the standard EXO-200 reconstruction routine processes the simulated waveforms to produce energy distributions comparable to that of real waveforms. Finally, the remaining discrepancies and potential ways to improve the approach further are highlighted.more » « less