- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Poeplau, Christopher (2)
-
Angers, Denis (1)
-
Baral, Prashant (1)
-
Borchard, Nils (1)
-
Bysouth, David (1)
-
Champiny, Ryan_E (1)
-
Cotrufo, M_Francesca (1)
-
Craig, Matthew_E (1)
-
Crate, Susan (1)
-
Doetterl, Sebastian (1)
-
Forbes, Bruce C (1)
-
Gaglioti, Benjamin (1)
-
Gannon, Glenna (1)
-
Georgiou, Katerina (1)
-
Grand, Stephanie (1)
-
Grandy, A_Stuart (1)
-
Habeck, Joachim Otto (1)
-
Jones, Benjamin (1)
-
Kanevskiy, Mikhail (1)
-
Kumpula, Timo (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Permafrost-agroecosystems include all cultivation and pastoral activities in areas underlain by permafrost. These systems support local livelihoods and food production and are rarely considered in global agricultural studies but may become more relevant as climate change is increasing opportunities for food production in high latitude and mountainous areas. The exact locations and amount of agricultural production in areas containing permafrost are currently unknown, therefore we provide an overview of countries where both permafrost and agricultural activities are present. We highlight the socioecological diversity and complexities of permafrost-agroecosystems through seven case studies: (1) crop cultivation in Alaska, USA; (2) Indigenous food systems and crop cultivation in the Northwest Territories, Canada; (3) horse and cattle husbandry and Indigenous hay production in the Sakha Republic, Russia; (4) mobile pastoralism and husbandry in Mongolia; (5) yak pastoralism in the Central Himalaya, Nepal; (6) berry picking and reindeer herding in northern Fennoscandia; and (7) reindeer herding in northwest Russia. We discuss regional knowledge gaps associated with permafrost and make recommendations to policy makers and land users for adapting to changing permafrost environments. A better understanding of permafrost-agroecosystems is needed to help sustainably manage and develop these systems considering rapidly changing climate, environments, economies, and industries.more » « less
-
Georgiou, Katerina; Angers, Denis; Champiny, Ryan_E; Cotrufo, M_Francesca; Craig, Matthew_E; Doetterl, Sebastian; Grandy, A_Stuart; Lavallee, Jocelyn_M; Lin, Yang; Lugato, Emanuele; et al (, Global Change Biology)ABSTRACT Managing soils to increase organic carbon storage presents a potential opportunity to mitigate and adapt to global change challenges, while providing numerous co‐benefits and ecosystem services. However, soils differ widely in their potential for carbon sequestration, and knowledge of biophysical limits to carbon accumulation may aid in informing priority regions. Consequently, there is great interest in assessing whether soils exhibit a maximum capacity for storing organic carbon, particularly within organo–mineral associations given the finite nature of reactive minerals in a soil. While the concept of soil carbon saturation has existed for over 25 years, recent studies have argued for and against its importance. Here, we summarize the conceptual understanding of soil carbon saturation at both micro‐ and macro‐scales, define key terminology, and address common concerns and misconceptions. We review methods used to quantify soil carbon saturation, highlighting the theory and potential caveats of each approach. Critically, we explore the utility of the principles of soil carbon saturation for informing carbon accumulation, vulnerability to loss, and representations in process‐based models. We highlight key knowledge gaps and propose next steps for furthering our mechanistic understanding of soil carbon saturation and its implications for soil management.more » « less
An official website of the United States government
