Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Plants that develop under low light (LL) intensity often display a phenotype known as the “shade tolerance syndrome (STS)”. This syndrome is similar to the phenotype of plants in the juvenile phase of shoot development, but the basis for this similarity is unknown. We tested the hypothesis that the STS is regulated by the same mechanism that regulates the juvenile vegetative phase by examining the effect of LL on rosette development in Arabidopsis (Arabidopsis thaliana). We found that LL prolonged the juvenile vegetative phase and that this was associated with an increase in the expression of the master regulators of vegetative phase change, miR156 and miR157, and a decrease in the expression of their SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) targets. Exogenous sucrose partially corrected the effect of LL on seedling development and miR156 expression. Our results suggest that the response of Arabidopsis to LL is mediated by an increase in miR156/miR157 expression and by factors that repress SPL gene expression independently of miR156/miR157, and is caused in part by a decrease in carbohydrate production. The effect of LL on vegetative phase change does not require the photoreceptors and transcription factors responsible for the shade avoidance syndrome, implying that light intensity and light quality regulate rosette development through different pathways.more » « less
-
Summary Phenotypic plasticity allows organisms to optimize traits for their environment. As organisms age, they experience diverse environments that benefit from varying degrees of phenotypic plasticity. Developmental transitions can control these age‐dependent changes in plasticity, and as such, the timing of these transitions can determine when plasticity changes in an organism.Here, we investigate how the transition from juvenile‐to adult‐vegetative development known as vegetative phase change (VPC) contributes to age‐dependent changes in phenotypic plasticity and how the timing of this transition responds to environment using both natural accessions and mutant lines in the model plantArabidopsis thaliana.We found that the adult phase of vegetative development has greater plasticity in leaf morphology than the juvenile phase and confirmed that this difference in plasticity is caused by VPC using mutant lines. Furthermore, we found that the timing of VPC, and therefore the time when increased plasticity is acquired, varies significantly across genotypes and environments.The consistent age‐dependent changes in plasticity caused by VPC suggest that VPC may be adaptive. This genetic and environmental variation in the timing of VPC indicates the potential for population‐level adaptive evolution of VPC.more » « less
-
Age-dependent changes in plant defense against herbivores are widespread, but why these changes exist remains a mystery. We explored this question by examining a suite of traits required for the interaction between swollen thorn acacias (genus Vachellia ) and ants of the genus Pseudomyrmex . In this system, plants provide ants with refuge and food in the form of swollen stipular spines, protein-lipid–rich “Beltian” bodies, and sugar-secreting extrafloral nectaries—the “swollen thorn syndrome.” We show that this syndrome develops at a predictable time in shoot development and is tightly associated with the temporal decline in the microRNAs miR156 and miR157 and a corresponding increase in their targets—the SPL transcription factors. Growth under reduced light intensity delays both the decline in miR156/157 and the development of the swollen thorn syndrome, supporting the conclusion that these traits are controlled by the miR156-SPL pathway. Production of extrafloral nectaries by Vachellia sp. that do not house ants is also correlated with a decline in miR156/157, suggesting that this syndrome evolved by co-opting a preexisting age-dependent program. Along with genetic evidence from other model systems, these findings support the hypothesis that the age-dependent development of the swollen thorn syndrome is a consequence of genetic regulation rather than a passive developmental pattern arising from developmental constraints on when these traits can develop.more » « less
An official website of the United States government
