Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Aims.We investigate microlensing data collected by the Korea Microlensing Telescope Network (KMTNet) survey during the 2021 and 2022 seasons to identify planetary lensing events displaying a consistent anomalous pattern. Our investigation reveals that the light curves of two lensing events, KMT-2021-BLG-2609 and KMT-2022-BLG-0303, exhibit a similar anomaly, in which short-term positive deviations appear on the sides of the low-magnification lensing light curves. Methods.To unravel the nature of these anomalies, we meticulously analyze each of the lensing events. Our investigations reveal that these anomalies stem from a shared channel, wherein the source passed near the planetary caustic induced by a planet with projected separations from the host star exceeding the Einstein radius. We find that interpreting the anomaly of KMT-2021-BLG-2609 is complicated by the “inner–outer” degeneracy, whereas for KMT-2022-BLG-0303, there is no such issue despite similar lens-system configurations. In addition to this degeneracy, interpreting the anomaly in KMT-2021-BLG-2609 involves an additional degeneracy between a pair of solutions, in which the source partially envelops the caustic and the other three solutions in which the source fully envelopes the caustic. As in an earlier case of this so-called von Schlieffen–Cannae degeneracy, the former solutions have substantially higher mass ratio. Results.Through Bayesian analyses conducted based on the measured lensing observables of the event time scale and angular Einstein radius, the host of KMT-2021-BLG-2609L is determined to be a low-mass star with a mass ~0.2M⊙in terms of a median posterior value, while the planet’s mass ranges from approximately 0.032 to 0.112 times that of Jupiter, depending on the solutions. For the planetary system KMT-2022-BLG-0303L, it features a planet with a mass of approximately 0.51MJand a host star with a mass of about 0.37M⊙. In both cases, the lenses are most likely situated in the bulge.more » « lessFree, publicly-accessible full text available September 1, 2025
-
Abstract We report the analysis of four unambiguous planets and one possible planet from the subprime fields (Γ ≤ 1 hr−1) of the 2017 Korea Microlensing Telescope Network (KMTNet) microlensing survey, to complete the KMTNet AnomalyFinder planetary sample for the 2017 subprime fields. They are KMT-2017-BLG-0849, KMT-2017-BLG-1057, OGLE-2017-BLG-0364, and KMT-2017-BLG-2331 (unambiguous), as well as KMT-2017-BLG-0958 (possible). For the four unambiguous planets, the mean planet–host mass ratios,q, are (1.0, 1.2, 4.6, 13) × 10−4, the median planetary masses are (6.4, 24, 76, 171)M⊕, and the median host masses are (0.19, 0.57, 0.49, 0.40)M⊙, respectively, found from a Bayesian analysis. We have completed the Anomaly Finder planetary sample from the first 4 yr of KMTNet data (2016–2019), with 112 unambiguous planets in total, which nearly tripled the microlensing planetary sample. The “sub-Saturn desert” ( ) found in the 2018 and 2019 KMTNet samples is confirmed by the 2016 and 2017 KMTNet samples.more » « lessFree, publicly-accessible full text available July 2, 2025
-
Abstract Observations of high-redshift galaxies ( z > 5) have shown that these galaxies have extreme emission lines with equivalent widths much larger than their local star-forming counterparts. Extreme emission line galaxies (EELGs) in the nearby universe are likely analogs to galaxies during the Epoch of Reionization and provide nearby laboratories to understand the physical processes important to the early universe. We use Hubble Space Telescope/Cosmic Origins Spectrograph and Large Binocular Telescope/Multi-Object Double Spectrographs spectra to study two nearby EELGs, J104457 and J141851. The far-UV spectra indicate that these two galaxies contain stellar populations with ages ≲10 Myr and metallicities ≤0.15 Z ⊙ . We use photoionization modeling to compare emission lines from models of single-age bursts of star formation to observed emission lines and find that the single-age bursts do not reproduce high-ionization lines including [O iii ] or very-high-ionization lines like He ii or O iv ]. Photoionization modeling using the stellar populations fit from the UV continuum similarly is not capable of reproducing the very-high-energy emission lines. We add a blackbody to the stellar populations fit from the UV continuum to model the necessary high-energy photons to reproduce the very-high-ionization lines of He ii and O iv ]. We find that we need a blackbody of 80,000 K and ∼45%–55% of the luminosity from the blackbody and young stellar population to reproduce the very-high-ionization lines while simultaneously reproducing the low-, intermediate-, and high-ionization emission lines. Our self-consistent model of the ionizing spectra of two nearby EELGs indicates the presence of a previously unaccounted-for source of hard ionizing photons in reionization analogs.more » « less
-
Aims. Light curves of microlensing events occasionally deviate from the smooth and symmetric form of a single-lens single-source event. While most of these anomalous events can be accounted for by employing a binary-lens single-source (2L 1S) or a single-lens binary-source (1L2S) framework, it is established that a small fraction of events remain unexplained by either of these interpretations. We carried out a project in which data collected by high-cadence microlensing surveys were reinvestigated with the aim of uncovering the nature of anomalous lensing events with no proposed 2L 1S or 1L 2S models. Methods. From the project we found that the anomaly appearing in the lensing event OGLE-2023-BLG-0836 cannot be explained by the usual interpretations, and we conducted a comprehensive analysis of the event. From thorough modeling of the light curve under sophisticated lens-system configurations, we arrived at the conclusion that a triple-mass lens system is imperative to account for the anomalous features observed in the lensing light curve. Results. From the Bayesian analysis using the measured observables of the event timescale and angular Einstein radius, we determined that the least massive component of the lens has a planetary mass of 4.36−2.18+2.35MJ. This planet orbits within a stellar binary system composed of two stars with masses 0.71−0.36+0.38M⊙and 0.56−0.28+0.30M⊙. This lensing event signifies the sixth occurrence of a planetary microlensing system in which a planet belongs to a stellar binary system.more » « less
-
Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)
-
Aims. We investigate the 2023 season data from high-cadence microlensing surveys with the aim of detecting partially covered shortterm signals and revealing their underlying astrophysical origins. Through this analysis, we ascertain that the signals observed in the lensing events KMT-2023-BLG-0416, KMT-2023-BLG-1454, and KMT-2023-BLG-1642 are of planetary origin. Methods. Considering the potential degeneracy caused by the partial coverage of signals, we thoroughly investigate the lensing-parameter plane. In the case of KMT-2023-BLG-0416, we have identified two solution sets, one with a planet-to-host mass ratio ofq~ 10−2and the other withq~ 6 × 10−5, within each of which there are two local solutions emerging due to the inner-outer degeneracy. For KMT-2023-BLG-1454, we discern four local solutions featuring mass ratios ofq~ (1.7−4.3) × 10−3. When it comes to KMT-2023-BLG-1642, we identified two locals withq~ (6 − 10) × 10−3resulting from the inner-outer degeneracy. Results. We estimate the physical lens parameters by conducting Bayesian analyses based on the event time scale and Einstein radius. For KMT-2023-BLG-0416L, the host mass is ~0.6M⊙, and the planet mass is ~(6.1−6.7)MJaccording to one set of solutions and ~0.04MJaccording to the other set of solutions. KMT-2023-BLG-1454Lb has a mass roughly half that of Jupiter, while KMT-2023-BLG-1646Lb has a mass in the range of between 1.1 to 1.3 times that of Jupiter, classifying them both as giant planets orbiting mid M-dwarf host stars with masses ranging from 0.13 to 0.17 solar masses.more » « less
-
Abstract We complete the analysis of planetary candidates found by the KMT AnomalyFinder for the 2017 prime fields that cover ∼13 deg2. We report three unambiguous planets: OGLE-2017-BLG-0640, OGLE-2017-BLG-1275, and OGLE-2017-BLG-1237. The first two of these were not previously identified, while the last was not previously published due to technical complications induced by a nearby variable. We further report that a fourth anomalous event, the previously recognized OGLE-2017-BLG-1777, is very likely to be planetary, although its light curve requires unusually complex modeling because the lens and source both have orbiting companions. One of the three unambiguous planets, OGLE-2017-BLG-1275, is the first AnomalyFinder discovery that has a Spitzer microlens parallax measurement,πE≃ 0.045 ± 0.015, implying that this planetary system almost certainly lies in the Galactic bulge. In the order listed, the four planetary events have planet-host mass ratiosqand normalized projected separationssof , (−2.06, 0.63/1.09), (−2.10, 1.04), and (−2.86, 0.72). Combined with previously published events, the 2017 prime fields contain 11 unambiguous planets with well-measuredqand one very likely candidate, of which three are AnomalyFinder discoveries. In addition to these 12, there are three other unambiguous planets with large uncertainties inq.more » « less
-
Abstract Stellar population models produce radiation fields that ionize oxygen up to O +2 , defining the limit of standard H ii region models (<54.9 eV). Yet, some extreme emission-line galaxies, or EELGs, have surprisingly strong emission originating from much higher ionization potentials. We present UV HST/COS and optical LBT/MODS spectra of two nearby EELGs that have very high-ionization emission lines (e.g., He ii λλ 1640,4686 C iv λλ 1548,1550, [Fe v ] λ 4227, [Ar iv ] λλ 4711,4740). We define a four-zone ionization model that is augmented by a very high-ionization zone, as characterized by He +2 (>54.4 eV). The four-zone model has little to no effect on the measured total nebular abundances, but does change the interpretation of other EELG properties: we measure steeper central ionization gradients; higher volume-averaged ionization parameters; and higher central T e , n e , and log U values. Traditional three-zone estimates of the ionization parameter can underestimate the average log U by up to 0.5 dex. Additionally, we find a model-independent dichotomy in the abundance patterns, where the α /H abundances are consistent but N/H, C/H, and Fe/H are relatively deficient, suggesting these EELGs are α /Fe-enriched by more than three times. However, there still is a high-energy ionizing photon production problem (HEIP 3 ). Even for such α /Fe enrichment and very high log U s, photoionization models cannot reproduce the very high-ionization emission lines observed in EELGs.more » « less
-
Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)
-
Abstract The dispersion in chemical abundances provides a very strong constraint on the processes that drive the chemical enrichment of galaxies. Due to its proximity, the spiral galaxy M33 has been the focus of numerous chemical abundance surveys to study the chemical enrichment and dispersion in abundances over large spatial scales. The CHemical Abundances Of Spirals project has observed ∼100 Hiiregions in M33 with the Large Binocular Telescope (LBT), producing the largest homogeneous sample of electron temperatures (Te) and direct abundances in this galaxy. Our LBT observations produce a robust oxygen abundance gradient of −0.037 ± 0.007 dex kpc−1and indicate a relatively small (0.043 ± 0.015 dex) intrinsic dispersion in oxygen abundance relative to this gradient. The dispersions in N/H and N/O are similarly small, and the abundances of Ne, S, Cl, and Ar relative to O are consistent with the solar ratio as expected forα-process orα-process-dependent elements. Taken together, the ISM in M33 is chemically well-mixed and homogeneously enriched from inside out, with no evidence of significant abundance variations at a given radius in the galaxy. Our results are compared to those of the numerous studies in the literature, and we discuss possible contaminating sources that can inflate abundance dispersion measurements. Importantly, if abundances are derived from a singleTemeasurement andTe–Terelationships are relied on for inferring the temperature in the unmeasured ionization zone, this can lead to systematic biases that increase the measured dispersion up to 0.11 dex.more » « less