skip to main content

Search for: All records

Creators/Authors contains: "Pokhrel, Suresh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Solanaceae or “nightshade” family is an economically important group with remarkable diversity. To gain a better understanding of how the unique biology of the Solanaceae relates to the family’s small RNA (sRNA) genomic landscape, we downloaded over 255 publicly available sRNA data sets that comprise over 2.6 billion reads of sequence data. We applied a suite of computational tools to predict and annotate two major sRNA classes: (1) microRNAs (miRNAs), typically 20- to 22-nucleotide (nt) RNAs generated from a hairpin precursor and functioning in gene silencing and (2) short interfering RNAs (siRNAs), including 24-nt heterochromatic siRNAs typically functioning to repress repetitive regions of the genome via RNA-directed DNA methylation, as well as secondary phased siRNAs and trans-acting siRNAs generated via miRNA-directed cleavage of a polymerase II-derived RNA precursor. Our analyses described thousands of sRNA loci, including poorly understood clusters of 22-nt siRNAs that accumulate during viral infection. The birth, death, expansion, and contraction of these sRNA loci are dynamic evolutionary processes that characterize the Solanaceae family. These analyses indicate that individuals within the same genus share similar sRNA landscapes, whereas comparisons between distinct genera within the Solanaceae reveal relatively few commonalities.
    Free, publicly-accessible full text available February 28, 2023
  2. Abstract

    Plant small RNAs are important regulatory elements that fine-tune gene expression and maintain genome integrity by silencing transposons. Reproductive organs of monocots produce abundant phased, small interfering RNAs (phasiRNAs). The 21-nt reproductive phasiRNAs triggered by miR2118 are highly enriched in pre-meiotic anthers, and have been found in multiple eudicot species, in contrast with prior reports of monocot specificity. The 24-nt reproductive phasiRNAs are triggered by miR2275, and are highly enriched during meiosis in many angiosperms. Here, we report the widespread presence of the 21-nt reproductive phasiRNA pathway in eudicots including canonical and non-canonical microRNA (miRNA) triggers of this pathway. In eudicots, these 21-nt phasiRNAs are enriched in pre-meiotic stages, a spatiotemporal distribution consistent with that of monocots and suggesting a role in anther development. Although this pathway is apparently absent in well-studied eudicot families including the Brassicaceae, Solanaceae and Fabaceae, our work in eudicots supports an earlier singular finding in spruce, a gymnosperm, indicating that the pathway of 21-nt reproductive phasiRNAs emerged in seed plants and was lost in some lineages.

  3. Small RNAs are abundant in plant reproductive tissues, especially 24-nucleotide (nt) small interfering RNAs (siRNAs). Most 24-nt siRNAs are dependent on RNA Pol IV and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and establish DNA methylation at thousands of genomic loci in a process called RNA-directed DNA methylation (RdDM). InBrassica rapa, RdDM is required in the maternal sporophyte for successful seed development. Here, we demonstrate that a small number of siRNA loci account for over 90% of siRNA expression duringB. rapaseed development. These loci exhibit unique characteristics with regard to their copy number and association with genomic features, but they resemble canonical 24-nt siRNA loci in their dependence on RNA Pol IV/RDR2 and role in RdDM. These loci are expressed in ovules before fertilization and in the seed coat, embryo, and endosperm following fertilization. We observed a similar pattern of 24-nt siRNA expression in diverse angiosperms despite rapid sequence evolution at siren loci. In the endosperm, siren siRNAs show a marked maternal bias, and siren expression in maternal sporophytic tissues is required for siren siRNA accumulation. Together, these results demonstrate that seed development occurs under the influence of abundant maternal siRNAs that might be transported to, and function in, filial tissues.