skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Poling-Skutvik, Ryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 26, 2025
  2. We investigate the dynamics of polymers grafted to spherical nanoparticles in solution using hybrid molecular dynamics simulations with a coarse-grained solvent modeled via the multiparticle collision dynamics algorithm. The mean-square displacements of monomers near the surface of the nanoparticle exhibit a plateau on intermediate time scales, indicating confined dynamics reminiscent of those reported in neutron spin–echo experiments. The confined dynamics vanish beyond a specific radial distance from the nanoparticle surface that depends on the polymer grafting density. We show that this dynamical confinement transition follows theoretical predictions for the critical distance associated with the structural transition from confined to semidilute brush regimes. These findings suggest the existence of a hitherto unreported dynamic length scale connected with theoretically predicted static fluctuations in spherical polymer brushes and provide new insights into recent experimental observations. 
    more » « less
    Free, publicly-accessible full text available November 21, 2024
  3. null (Ed.)
  4. null (Ed.)
  5. The hierarchical structure and dynamics of polymer solutions control the transport of nanoparticles (NPs) through them. Here, we perform multi-particle collision dynamics simulations of solutions of semiflexible polymer chains with tunable persistence length l p to investigate the effect of chain stiffness on NP transport. The NPs exhibit two distinct dynamical regimes – subdiffusion on short time scales and diffusion on long time scales. The long-time NP diffusivities are compared with predictions from the Stokes–Einstein relation (SER), mode-coupling theory (MCT), and a recent polymer coupling theory (PCT). Increasing deviations from the SER as the polymer chains become more rigid ( i.e. as l p increases) indicate that the NP motions become decoupled from the bulk viscosity of the polymer solution. Likewise, polymer stiffness leads to deviations from PCT, which was developed for fully flexible chains. Independent of l p , however, the long-time diffusion behavior is well-described by MCT, particularly at high polymer concentration. We also observed that the short-time subdiffusive dynamics are strongly dependent on polymer flexibility. As l p is increased, the NP dynamics become more subdiffusive and decouple from the dynamics of the polymer chain center-of-mass. We posit that these effects are due to differences in the segmental mobility of the semiflexible chains. 
    more » « less