skip to main content


Search for: All records

Creators/Authors contains: "Polito, Michael J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Studies of Antarctic paleo‐archives have produced conflicting hypotheses on the relative impact of long‐term climate change and historic exploitation of marine mammals on Southern Ocean krill predator foraging ecology. We disentangle these hypotheses using amino acid stable isotope analysis on a 7000‐yr Holocene archive of Adélie penguin (Pygoscelis adeliae) eggshells to differentiate variation in diet and trophic dynamics from baseline biogeochemical cycling as drivers of the rapid decline in krill predator bulk tissue δ15N values in recent centuries. Contrary to previous hypotheses suggesting solely trophic dynamic mechanisms as drivers of this decline, we identified an abrupt decline in source amino acid δ15N values, indicative of major changes in biogeochemical cycling at the base of the Southern Ocean food web that mirrored the decline in penguin bulk tissue δ15N values. These abrupt shifts in penguin δ15N values and associated biogeochemical cycling aligned with climatic events during the Little Ice Age that decreased surface δ15NNO3−, likely connected to a proposed increase in Ekman upwelling via a southward migration of the Westerlies. This baseline shift was in addition to a long‐term, gradual decline in penguin trophic position over the Holocene that began prior to both recent anthropogenic climate change and a proposed “krill‐surplus” following historic marine mammal exploitation in the 19thand 20thcenturies. In resolving these outstanding hypotheses about drivers of Southern Ocean food web dynamics, this study emphasizes the fundamental importance of climate‐induced variability in biogeochemical cycling on ecological processes and improves the ability of paleo‐archives to inform the ecological consequences of future environmental change in the Southern Ocean.

     
    more » « less
  2. Abstract Identifying the composition of avian diets is a critical step in characterizing the roles of birds within ecosystems. However, because birds are a diverse taxonomic group with equally diverse dietary habits, gaining an accurate and thorough understanding of avian diet can be difficult. In addition to overcoming the inherent difficulties of studying birds, the field is advancing rapidly, and researchers are challenged with a myriad of methods to study avian diet, a task that has only become more difficult with the introduction of laboratory techniques to dietary studies. Because methodology drives inference, it is important that researchers are aware of the capabilities and limitations of each method to ensure the results of their study are interpreted correctly. However, few reviews exist which detail each of the traditional and laboratory techniques used in dietary studies, with even fewer framing these methods through a bird-specific lens. Here, we discuss the strengths and limitations of morphological prey identification, DNA-based techniques, stable isotope analysis, and the tracing of dietary biomolecules throughout food webs. We identify areas of improvement for each method, provide instances in which the combination of techniques can yield the most comprehensive findings, introduce potential avenues for combining results from each technique within a unified framework, and present recommendations for the future focus of avian dietary research. 
    more » « less
  3. Abstract

    Climatic controls regulate the coupled natural and human systems in coastal Tanzania, where mangrove wetlands provide a wealth of ecosystem services to coastal communities. Previous research has explained the precipitation seasonality of eastern Africa in terms of the local monsoons. This research examines a wider range of hydroclimatic variables, including water vapour flux, evapotranspiration, runoff, and ocean salinity, and the sources of low‐frequency atmosphere–ocean variability that support mangrove productivity and associated ecosystem services. Results confirm previous work suggesting that the northeast monsoon (kaskazi) largely corresponds to the “short rains” of October–December and extends through February, while the southeast monsoon (kusi) corresponds to the “long rains” of March–May and the drier June–September. The Indian Ocean Dipole (IOD) and, to a lesser extent, El Niño–Southern Oscillation (ENSO) are important modulators not only of precipitation (as has been shown previously) but also of water vapour flux, evapotranspiration, runoff, and salinity variability. Duringkaskazi, positive (negative) hydroclimatic anomalies occur during positive (negative) IOD, with a stronger IOD influence occurring during its positive phase, when seasonal anomalies of precipitation, evapotranspiration, and runoff exceed +50, 25, and 100%, and nearby salinity decreases by 0.5 practical salinity units. Duringkusi, the contrast between the positive and negative IOD modes is subtler, and the pattern is dictated more by variability in “long rains” months than in the dry months. The coincidence of the positive IOD and El Niño amplify this hydroclimatic signal. Because previous work suggests the likelihood of increased tendency for positive IOD and increased moisture variability associated with El Niño events in the future, wetter conditions may accompany thekaskazi, with less change expected during thekusi. These results advance understanding of the key environmental drivers controlling mangrove productivity and wetland spatial distribution that provide ecosystem services essential to the well‐being of the human population.

     
    more » « less
  4. Abstract

    Compound‐specific stable isotope analysis (CSIA) of amino acids (AA) has rapidly become a powerful tool in studies of food web architecture, resource use, and biogeochemical cycling. However, applications to avian ecology have been limited because no controlled studies have examined the patterns inAAisotope fractionation in birds. We conducted a controlledCSIAfeeding experiment on an avian species, the gentoo penguin (Pygoscelis papua), to examine patterns in individualAAcarbon and nitrogen stable isotope fractionation between diet (D) and consumer (C) (Δ13CC‐Dand Δ15NC‐D, respectively). We found that essentialAAδ13C values and sourceAAδ15N values in feathers showed minimal trophic fractionation between diet and consumer, providing independent but complimentary archival proxies for primary producers and nitrogen sources respectively, at the base of food webs supporting penguins. Variations in nonessentialAAΔ13CC‐Dvalues reflected differences in macromolecule sources used for biosynthesis (e.g., protein vs. lipids) and provided a metric to assess resource utilization. The avian‐specific nitrogen trophic discrimination factor (TDFGlu‐Phe= 3.5 ± 0.4‰) that we calculated from the difference in trophic fractionation (Δ15NC‐D) of glutamic acid and phenylalanine was significantly lower than the conventional literature value of 7.6‰. Trophic positions of five species of wild penguins calculated using a multi‐TDFGlu‐Pheequation with the avian‐specificTDFGlu‐Phevalue from our experiment provided estimates that were more ecologically realistic than estimates using a singleTDFGlu‐Pheof 7.6‰ from the previous literature. Our results provide a quantitative, mechanistic framework for the use ofCSIAin nonlethal, archival feathers to study the movement and foraging ecology of avian consumers.

     
    more » « less