- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Angus, Charlotte_R (1)
-
Auchettl, Katie (1)
-
Bodola, Zsófia (1)
-
Bánhidi, Dominik (1)
-
Bíró, Barna_Imre (1)
-
Bódi, Attila (1)
-
Chambers, Kenneth_C (1)
-
Chornock, Ryan (1)
-
Coulter, David_A (1)
-
Cseh, Borbála (1)
-
Csányi, István (1)
-
Dandu, Srujan (1)
-
Davis, Kyle_W (1)
-
Dickinson, Connor_Braden (1)
-
Farah, Joseph (1)
-
Farias, Diego (1)
-
Foley, Ryan_J (1)
-
Gall, Christa (1)
-
Gao, Hua (1)
-
Howell, D_Andrew (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present the photometric and spectroscopic evolution of SN 2022oqm, a nearby multipeaked hydrogen- and helium-weak calcium-rich transient (CaRT). SN 2022oqm was detected 13.1 kpc from its host galaxy, the face-on spiral galaxy NGC 5875. Extensive spectroscopic coverage reveals an early hot (T≥ 40,000 K) continuum and carbon features observed ∼1 day after discovery, SN Ic-like photospheric-phase spectra, and strong forbidden calcium emission starting 38 days after discovery. SN 2022oqm has a relatively high peak luminosity (MB= −17 mag) for CaRTs, making it an outlier in the population. We determine that three power sources are necessary to explain the light curve (LC), with each corresponding to a distinct peak. The first peak is powered by an expanding blackbody with a power-law luminosity, suggesting shock cooling by circumstellar material (CSM). Subsequent LC evolution is powered by a double radioactive decay model, consistent with two sources of photons diffusing through optically thick ejecta. From the LC, we derive an ejecta mass and56Ni mass of ∼0.6M⊙and ∼0.09M⊙. Spectroscopic modeling ∼0.6M⊙of ejecta, and with well-mixed Fe-peak elements throughout. We discuss several physical origins for SN 2022oqm and find either a surprisingly massive white dwarf progenitor or a peculiar stripped envelope model could explain SN 2022oqm. A stripped envelope explosion inside a dense, hydrogen- and helium-poor CSM, akin to SNe Icn, but with a large 56Ni mass and small CSM mass could explain SN 2022oqm. Alternatively, helium detonation on an unexpectedly massive white dwarf could also explain SN 2022oqm.more » « less
An official website of the United States government
