skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Polley, H. Wayne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Terrestrial ecosystems are increasingly enriched with resources such as atmospheric CO 2 that limit ecosystem processes. The consequences for ecosystem carbon cycling depend on the feedbacks from other limiting resources and plant community change, which remain poorly understood for soil CO 2 efflux, J CO2 , a primary carbon flux from the biosphere to the atmosphere. We applied a unique CO 2 enrichment gradient (250 to 500 µL L −1 ) for eight years to grassland plant communities on soils from different landscape positions. We identified the trajectory of J CO2 responses and feedbacks from other resources, plant diversity [effective species richness, exp(H)], and community change (plant species turnover). We found linear increases in J CO2 on an alluvial sandy loam and a lowland clay soil, and an asymptotic increase on an upland silty clay soil. Structural equation modeling identified CO 2 as the dominant limitation on J CO2 on the clay soil. In contrast with theory predicting limitation from a single limiting factor, the linear J CO2 response on the sandy loam was reinforced by positive feedbacks from aboveground net primary productivity and exp(H), while the asymptotic J CO2 response on the silty clay arose from a net negative feedback among exp(H), species turnover, and soil water potential. These findings support a multiple resource limitation view of the effects of global change drivers on grassland ecosystem carbon cycling and highlight a crucial role for positive or negative feedbacks between limiting resources and plant community structure. Incorporating these feedbacks will improve models of terrestrial carbon sequestration and ecosystem services. 
    more » « less
  2. null (Ed.)