Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Abstract Ocean heat content (OHC) is key to estimating the energy imbalance of the earth system. Over the past two decades, an increasing number of OHC studies were conducted using oceanic objective analysis (OA) products. Here we perform an intercomparison of OHC from eight OA products with a focus on their robust features and significant differences over the Argo period (2005-2019), when the most reliable global scale oceanic measurements are available. For the global ocean, robust warming in the upper 2000 m is confirmed. The 0-300 m layer shows the highest warming rate but is heavily modulated by interannual variability, particularly the El Niño–Southern Oscillation. The 300-700 m and 700-2000 m layers, on the other hand, show unabated warming. Regionally, the Southern Ocean and mid-latitude North Atlantic show a substantial OHC increase, and the subpolar North Atlantic displays an OHC decrease. A few apparent differences in OHC among the examined OA products were identified. In particular, temporal means of a few OA products that incorporated other ocean measurements besides Argo show a global-scale cooling difference, which is likely related to the baseline climatology fields used to generate those products. Large differences also appear in the interannual variability in the Southern Ocean and in the long-term trends in the subpolar North Atlantic. These differences remind us of the possibility of product-dependent conclusions on OHC variations. Caution is therefore warranted when using merely one OA product to conduct OHC studies, particularly in regions and on timescales that display significant differences.more » « less
-
null (Ed.)Abstract Salinity is one of the fundamental ocean state variables and has been used to infer important information about climate change and variability. Previous studies have found inconsistent salinity variations in various objective ocean analyses that are based on the Argo measurements. However, as far as we are aware, a comprehensive assessment of those inconsistencies, as well as robust spatial and temporal features of salinity variability among the Argo-based products, has not been conducted. Here we compare and evaluate ocean salinity variability from five objective ocean analyses that are solely or primarily based on Argo measurements for their overlapping period from 2005 to 2015. We examine the salinity variability at the sea surface and within two depth intervals (0–700 and 700–2000 m). Our results show that the climatological mean is generally consistent among all examined products, although regional discrepancies are evident in the subsurface ocean. The time evolution, vertical structure, and leading EOF modes of salinity variations show good agreement among most of the examined products, indicating that a number of robust features of the salinity variability can be obtained by examining gridded Argo products. However, significant discrepancies in these variations exist, particularly in the subsurface North Atlantic and Southern Oceans. Also, despite the increasing number of Argo floats deployed in the ocean, the discrepancies were not significantly reduced over time. Our analyses, particularly those of the discrepancies between products, can serve as a useful reference for utilizing and improving the existing objective ocean analyses that are based on Argo measurements.more » « less
-
Abstract Tide gauges provide a rich, long‐term, record of the amplitude and spatiotemporal structure of interannual to multidecadal coastal sea‐level variability, including that related to North American east coast sea level “hotspots.” Here, using wavelet analyses, we find evidence for multidecadal epochs of enhanced decadal (10–15 year period) sea‐level variability at almost all long (70 years) east coast tide gauge records. Within this frequency band, large‐scale spatial covariance is time‐dependent; notably, coastal sectors north and south of Cape Hatteras exhibit multidecadal epochs of coherence (1960–1990) and incoherence (1990‐present). Results suggest that previous interpretations of along coast covariance, and its underlying physical drivers, are clouded by time‐dependence and frequency‐dependence. Although further work is required to clarify the mechanisms driving sea‐level variability in this frequency band, we highlight potential associations with the North Atlantic sea surface temperature tripole and Atlantic Multidecadal Variability.more » « less
-
Abstract Salinity is an essential proxy for estimating the global net freshwater input into the ocean. Due to the limited spatial and temporal coverage of the existing salinity measurements, previous studies of global salinity changes focused mostly on the surface and upper oceans. Here, we examine global ocean salinity changes and ocean vertical salt fluxes over the full depth in a dynamically consistent and data-constrained ocean state estimate. The changes of the horizontally averaged salinity display a vertically layered structure, consistent with the profiles of the ocean vertical salt fluxes. For salinity changes in the relatively well-observed upper ocean, the contribution of vertical exchange of salt can be on the same order of the net surface freshwater input. The vertical redistribution of salt thus should be considered in inferring changes in global ocean salinity and the hydrological cycle from the surface and upper ocean measurements.more » « less
-
Abstract Monthly observations are used to study the relationship between the Atlantic meridional overturning circulation (AMOC) at 26° N and sea level (ζ) on the New England coast (northeastern United States) over nonseasonal timescales during 2004–2017. Variability inζis anticorrelated with AMOC on intraseasonal and interannual timescales. This anticorrelation reflects the stronger underlying antiphase relationship between ageostrophic Ekman‐related AMOC transports due to local zonal winds across 26° N andζchanges arising from local wind and pressure forcing along the coast. These distinct local atmospheric variations across 26° N and along coastal New England are temporally correlated with one another on account of large‐scale atmospheric teleconnection patterns. Geostrophic AMOC contributions from the Gulf Stream through the Florida Straits and upper‐mid‐ocean transport across the basin are together uncorrelated withζ. This interpretation contrasts with past studies that understoodζand AMOC as being in geostrophic balance with one another.more » « less