skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Poole, Geoffrey C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In streams where water temperatures stress native biota, management of riparian shade or hyporheic exchange are both considered viable management strategies for reducing the peaks of daily and seasonal stream channel temperature cycles. Although shade and hyporheic exchange may have similar effects on stream temperatures, their mechanisms differ. Improved understanding of the heat‐exchange mechanisms influenced by shade and hyporheic exchange will aid in the appropriate application of either stream temperature management strategy. To illustrate a conceptual model highlighting shade as ‘thermal insulation’ and hyporheic exchange imparting ‘thermal capacitance’ to a stream reach, we conducted an in‐silico simulation modelling experiment increasing shade or hyporheic exchange parameters on an idealized, hypothetical stream. We assessed the potential effects of increasing shade or hyporheic exchange on a stream reach using an established process‐based heat‐energy budget model of stream‐atmosphere heat exchange and incorporated an advection‐driven hyporheic heat exchange routine. The model tracked heat transport through the hyporheic zone and exchange with the stream channel, while including the effects of hyporheic water age distribution on upwelling hyporheic temperatures. Results showed that shade and hyporheic exchange similarly damped diurnal temperature cycles and differentially altered seasonal cycles of our theoretical stream. In winter, hyporheic exchange warmed simulated channel temperatures whereas shade had little effect. In summer, both shade and hyporheic exchange cooled channel temperatures, though the effects of shade were more pronounced. Our simple‐to‐grasp analogies of ‘thermal insulation’ for shade effects and ‘thermal capacitance’ for hyporheic exchange effects on stream temperature encourage more accurate conceptualization of complex, dynamic heat exchange processes among the atmosphere, stream channel, and alluvial aquifer. 
    more » « less
  2. Abstract Larval net-spinning caddisflies (Hydropsychidae) function as ecosystem engineers in streams where they construct protective retreats composed of organic and inorganic material affixed with silk filtration nets that alter streambed hydrology. We hypothesized that hydropsychid bio-structures (retreats, nets) are microhabitats for microbes with oxygen-sensitive metabolisms, and therefore increase the metabolic heterogeneity of streambed microbial assemblages. Metagenomic and 16 S rRNA gene amplicon analysis of samples from a montane stream (Cherry Creek, Montana, USA) revealed that microbiomes of caddisfly bio-structures are taxonomically and functionally distinct from those of the immediately adjacent rock biofilm (~2 cm distant) and enriched in microbial taxa with established roles in denitrification, nitrification, and methane production. Genes for denitrification, high oxygen affinity terminal oxidases, hydrogenases, oxidative dissimilatory sulfite reductases, and complete ammonia oxidation are significantly enriched in caddisfly bio-structures. The results suggest a novel ecosystem engineering effect of caddisflies through the creation of low-oxygen, denitrifier-enriched niches in the stream microbiome. Facilitation of metabolic diversity in streambeds may be a largely unrecognized mechanism by which caddisflies alter whole-stream biogeochemistry. 
    more » « less
  3. Instrument fidelity in message testing research hinges upon how precisely messages operationalize treatment conditions. However, numerous message testing studies have unmitigated threats to validity and reliability because no established procedures exist to guide construction of message treatments. Their construction typically occurs in a black box, resulting in suspect inferential conclusions about treatment effects. Because a mixed methods approach is needed to enhance instrument fidelity in message testing research, this article contributes to the field of mixed methods research by presenting an integrated multistage procedure for constructing precise message treatments using an exploratory sequential mixed methods design. This work harnesses the power of integration through crossover analysis to improve instrument fidelity in message testing research through the use of natural language processing (NLP). 
    more » « less
  4. Mendoza-Lera, Clara (Ed.)
    Hyporheic exchange is now widely acknowledged as a key driver of ecosystem processes in many streams. Yet stream ecologists have been slow to adopt nuanced hydrologic frameworks developed and applied by engineers and hydrologists to describe the relationship between water storage, water age, and water balance in finite hydrosystems such as hyporheic zones. Here, in the context of hyporheic hydrology, we summarize a well-established mathematical framework useful for describing hyporheic hydrology, while also applying the framework heuristically to visualize the relationships between water age, rates of hyporheic exchange, and water volume within hyporheic zones. Building on this heuristic application, we discuss how improved accuracy in the conceptualization of hyporheic exchange can yield a deeper understanding of the role of the hyporheic zone in stream ecosystems. Although the equations presented here have been well-described for decades, our aim is to make the mathematical basis as accessible as possible and to encourage broader understanding among aquatic ecologists of the implications of tailed age distributions commonly observed in water discharged from and stored within hyporheic zones. Our quantitative description of “hyporheic hydraulic geometry,” associated visualizations, and discussion offer a nuanced and realistic understanding of hyporheic hydrology to aid in considering hyporheic exchange in the context of river and stream ecosystem science and management. 
    more » « less
  5. null (Ed.)
  6. Abstract Systematic variations in atmospheric heat exchange, surface residence time, and groundwater influx across montane stream networks commonly produce an increasing stream temperature trend with decreasing elevation. However, complex stream temperature profiles that differ from this common longitudinal trend also exist, suggesting that stream temperatures may be influenced by complex interactions among hydrologic and atmospheric processes. Lakes within stream networks form one potential source of temperature profile complexity due to the spatially variable contribution of lake‐sourced water to stream flow. We investigated temperature profile complexity in a multi‐season stream temperature dataset collected across a montane stream network containing many alpine lakes. This investigation was performed by making comparisons between multiple statistical models that used different combinations of stream and lake characteristics to represent specific hypotheses for the controls on stream temperature. The compared models included a set of models which used a topographically derived estimate of the hydrologic influence of lakes to separate and quantify the effects of stream elevation and lake source‐water contributions to longitudinal stream temperature patterns. This source‐water mixing model provided a parsimonious explanation for complex stream‐network temperature patterns in the summer and autumn, and this approach may be further applicable to other systems where stream temperatures are influenced by multiple water sources. Simpler models that discounted lake effects were more optimal during the winter and spring, suggesting that complex patterns in stream temperature profiles may emerge and subside temporally, across seasons, in response to diversity of water temperatures from different sources. 
    more » « less