skip to main content


Search for: All records

Creators/Authors contains: "Popov, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. Free, publicly-accessible full text available September 1, 2024
  3. Free, publicly-accessible full text available September 1, 2024
  4. Free, publicly-accessible full text available September 1, 2024
  5. Free, publicly-accessible full text available August 1, 2024
  6. Abstract The production of Z bosons associated with jets is measured in $$\text {p}\text {p}$$ pp collisions at $$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$ s = 13 Te V with data recorded with the CMS experiment at the LHC corresponding to an integrated luminosity of 36.3 $$\,\text {fb}^{-1}$$ fb - 1 . The multiplicity of jets with transverse momentum $$p_{\textrm{T}} > 30\,\text {Ge}\hspace{-.08em}\text {V} $$ p T > 30 Ge V is measured for different regions of the Z boson’s $$p_{\textrm{T}} (\text {Z })$$ p T ( Z ) , from lower than 10 $$\,\text {Ge}\hspace{-.08em}\text {V}$$ Ge V to higher than 100 $$\,\text {Ge}\hspace{-.08em}\text {V}$$ Ge V . The azimuthal correlation $$\varDelta \phi $$ Δ ϕ between the Z boson and the leading jet, as well as the correlations between the two leading jets are measured in three regions of $$p_{\textrm{T}} (\text {Z })$$ p T ( Z ) . The measurements are compared with several predictions at leading and next-to-leading orders, interfaced with parton showers. Predictions based on transverse-momentum dependent parton distributions and corresponding parton showers give a good description of the measurement in the regions where multiple parton interactions and higher jet multiplicities are not important. The effects of multiple parton interactions are shown to be important to correctly describe the measured spectra in the low $$p_{\textrm{T}} (\text {Z })$$ p T ( Z ) regions. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  7. Abstract Multijet events at large transverse momentum ( $$p_{\textrm{T}}$$ p T ) are measured at $$\sqrt{s}=13\,\text {TeV} $$ s = 13 TeV using data recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of $$36.3{\,\text {fb}^{-1}} $$ 36.3 fb - 1 . The multiplicity of jets with $$p_{\textrm{T}} >50\,\text {GeV} $$ p T > 50 GeV that are produced in association with a high- $$p_{\textrm{T}}$$ p T dijet system is measured in various ranges of the $$p_{\textrm{T}}$$ p T of the jet with the highest transverse momentum and as a function of the azimuthal angle difference $$\varDelta \phi _{1,2}$$ Δ ϕ 1 , 2 between the two highest $$p_{\textrm{T}}$$ p T jets in the dijet system. The differential production cross sections are measured as a function of the transverse momenta of the four highest $$p_{\textrm{T}}$$ p T jets. The measurements are compared with leading and next-to-leading order matrix element calculations supplemented with simulations of parton shower, hadronization, and multiparton interactions. In addition, the measurements are compared with next-to-leading order matrix element calculations combined with transverse-momentum dependent parton densities and transverse-momentum dependent parton shower. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  8. Free, publicly-accessible full text available August 1, 2024
  9. A<sc>bstract</sc>

    Results are presented from a search for CP violation in top quark pair production, using proton-proton collisions at a center-of-mass energy of 13 TeV. The data used for this analysis consist of final states with two charged leptons collected by the CMS experiment, and correspond to an integrated luminosity of 35.9 fb1. The search uses two observables,$$ \mathcal{O} $$O1and$$ \mathcal{O} $$O3, which are Lorentz scalars. The observable$$ \mathcal{O} $$O1is constructed from the four-momenta of the charged leptons and the reconstructed top quarks, while$$ \mathcal{O} $$O3consists of the four-momenta of the charged leptons and the b quarks originating from the top quarks. Asymmetries in these observables are sensitive to CP violation, and their measurement is used to determine the chromoelectric dipole moment of the top quark. The results are consistent with the expectation from the standard model.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  10. Free, publicly-accessible full text available July 1, 2024