skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Porat, Omri"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Escarpments and cliffs (hereafter termed escarpments) form topographic barriers that influence the spatial patterns of climate and biodiversity. The inherent extreme slope change across the escarpment edge promotes escarpment retreat over time. Typically, escarpments are divided into arch‐ and shoulder‐types. In arch‐type, the drainage divide is located inland, and knickpoints, located where channels flow across the escarpment, can retreat and embay the escarpment. In shoulder‐type, the divide aligns with the escarpment edge, a setting expected to cause a slow and uniform escarpment retreat, preserving their integrity as barriers through time. However, observations from around the globe reveal shoulder‐type escarpments are associated with deep embayments (i.e., alcoves) that destroy the linear appearance of the escarpment front. Yet, the processes that produce and sustain these embayments remain largely unexplored. Embayments of shoulder‐type escarpments typically occur along reversed channels which were part of the antecedent drainage that used to flow away from the escarpment but now flow toward it, often resulting in a valley confined drainage divide called a windgap. Here, we hypothesize that feedback between knickpoint retreat and windgap migration away from the escarpment along reversed channels can sustain escarpment embayments, and use topographic analyses and numerical simulations to explore this hypothesis. Our analyses, focused on field sites in the Negev Desert, show that embayments of shoulder‐type escarpments can be sustained through the hypothesized feedback, and quantify the sensitivity of this feedback to geomorphologic and lithologic parameters. Results suggest that this feedback may explain some of the global variability of escarpment morphologies. 
    more » « less