skip to main content


Search for: All records

Creators/Authors contains: "Porter, Nicholas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Porter, Nicholas ; Gangopadhyay, Avijit (Ed.)
    This dataset consists of weekly trajectory information of Gulf Stream Warm Core Rings (WCR) that existed between 2021 and 2023. This work builds upon two previous datasets: (i) Warm Core Ring trajectory information from 2000 to 2010 -- Porter et al. (2022) (https://doi.org/10.5281/zenodo.7406675) (ii) Warm Core Ring trajectory information from 2011 to 2020 -- Silver et al. (2022a) (https://doi.org/10.5281/zenodo.6436380). Combining these three datasets (previous two and this one), a total of 24 years of weekly Warm Core Ring trajectories are now available. An example of how to use such a dataset can be found in Silver et al. (2022b). The format of the dataset is similar to that of Porter et al. (2022) and Silver et al. (2022a), and the following description is adapted from those datasets. This dataset is comprised of individual files containing each ring’s weekly center location and its surface area for 81 WCRs that existed and tracked between January 1, 2021 and December 31, 2023 (5 WCRs formed in 2020 and still existed in 2021; 28 formed in 2021; 30 formed in 2022; 18 formed in 2023). Each Warm Core Ring is identified by a unique alphanumeric code 'WEyyyymmddX', where 'WE' represents a Warm Eddy (as identified in the analysis charts); 'yyyymmdd' is the year, month and day of formation; and the last character 'X' represents the sequential sighting (formation) of the eddy in that particular year. Continuity of a ring which passes from one year to the next is maintained by the same character in the previous year and absorbed by the initial alphabets for the next year. For example, the first ring formed in 2022 has a trailing alphabet of 'H', which signifies that a total of seven rings were carried over from 2021 which were still present on January 1, 2022 and were assigned the initial seven alphabets (A, B, C, D, E, F and G). Each ring has its own netCDF (.nc) filename following its alphanumeric code. Each file contains 4 variables every week, “Lon”- the ring center’s longitude, “Lat”- the ring center’s latitude, “Area” - the rings size in km^2, and “Date” in days – which is the number of days since Jan 01, 0000. Five rings formed in the year 2020 that carried over into the year 2021 were included in this dataset. These rings include ‘WE20200724Q’, ‘WE20200826R’, ‘WE20200911S’, ‘WE20200930T’, and ‘WE20201111W’. The two rings that formed in 2023, and were carried over into the following year were included with their full trajectories going into the year 2024. These rings include ‘WE20231006U’ and ‘WE20231211W’. The process of creating the WCR tracking dataset follows the same methodology of the previously generated WCR census (Gangopadhyay et al., 2019, 2020). The Jenifer Clark’s Gulf Stream Charts (Gangopadhyay et al., 2019) used to create this dataset are 2-3 times a week from 2021-2023. Thus, we used approximately 360+ Charts for the 3 years of analysis. All of these charts were reanalyzed between -75° and -55°W using QGIS 2.18.16 (2016) and geo-referenced on a WGS84 coordinate system (Decker, 1986). 
    more » « less
  2. This dataset consists of weekly trajectory information of Gulf Stream Warm Core Rings from 2000-2010. This work builds upon Silver et al. (2022a) ( https://doi.org/10.5281/zenodo.6436380) which contained Warm Core Ring trajectory information from 2011 to 2020. Combining the two datasets a total of 21 years of weekly Warm Core Ring trajectories can be obtained. An example of how to use such a dataset can be found in Silver et al. (2022b).

    The format of the dataset is similar to that of  Silver et al. (2022a), and the following description is adapted from their dataset. This dataset is comprised of individual files containing each ring’s weekly center location and its area for 374 WCRs present between January 1, 2000 and December 31, 2010. Each Warm Core Ring is identified by a unique alphanumeric code 'WEyyyymmddA', where 'WE' represents a Warm Eddy (as identified in the analysis charts); 'yyyymmdd' is the year, month and day of formation; and the last character 'A' represents the sequential sighting of the eddies in a particular year. Continuity of a ring which passes from one year to the next is maintained by the same character in the first sighting.  For example, the first ring in 2002 having a trailing alphabet of 'F' indicates that five rings were carried over from 2001 which were still observed on January 1, 2002. Each ring has its own netCDF (.nc) filename following its alphanumeric code. Each file contains 4 variables, “Lon”- the ring center’s weekly longitude, “Lat”- the ring center’s weekly latitude, “Area” - the rings weekly size in km2, and “Date” in days - representing the days since Jan 01, 0000. 

    The process of creating the WCR tracking dataset follows the same methodology of the previously generated WCR census (Gangopadhyay et al., 2019, 2020). The Jenifer Clark’s Gulf Stream Charts used to create this dataset are 2-3 times a week from 2000-2010. Thus, we used approximately 1560 Charts for the 10 years of analysis. All of these charts were reanalyzed between 75° and 55°W using QGIS 2.18.16 (2016) and geo-referenced on a WGS84 coordinate system (Decker, 1986). 

     

    Silver, A., Gangopadhyay, A, & Gawarkiewicz, G. (2022a). Warm Core Ring Trajectories in the Northwest Atlantic Slope Sea (2011-2020) (1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6436380

    Silver, A., Gangopadhyay, A., Gawarkiewicz, G., Andres, M., Flierl, G., & Clark, J. (2022b). Spatial Variability of Movement, Structure, and Formation of Warm Core Rings in the Northwest Atlantic Slope Sea. Journal of Geophysical Research: Oceans127(8), e2022JC018737. https://doi.org/10.1029/2022JC018737 

    Gangopadhyay, A., G. Gawarkiewicz, N. Etige, M. Monim and J. Clark, 2019. An Observed Regime Shift in the Formation of Warm Core Rings from the Gulf Stream, Nature - Scientific Reports, https://doi.org/10.1038/s41598-019-48661-9. www.nature.com/articles/s41598-019-48661-9.

    Gangopadhyay, A., N. Etige, G. Gawarkiewicz, A. M. Silver, M. Monim and J. Clark, 2020.  A Census of the Warm Core Rings of the Gulf Stream (1980-2017). Journal of Geophysical Research, Oceans, 125, e2019JC016033. https://doi.org/10.1029/2019JC016033.

    QGIS Development Team. QGIS Geographic Information System (2016).

    Decker, B. L. World Geodetic System 1984. World geodetic system 1984 (1986).

     

    Funded by two NSF US grants OCE-1851242, OCE-212328 {"references": ["Silver, A., Gangopadhyay, A, & Gawarkiewicz, G. (2022). Warm Core Ring Trajectories in the Northwest Atlantic Slope Sea (2011-2020) (1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6436380", "Silver, A., Gangopadhyay, A., Gawarkiewicz, G., Andres, M., Flierl, G., & Clark, J. (2022b). Spatial Variability of Movement, Structure, and Formation of Warm Core Rings in the Northwest Atlantic Slope Sea.\u00a0Journal of Geophysical Research: Oceans,\u00a0127(8), e2022JC018737.\u00a0https://doi.org/10.1029/2022JC018737", "Gangopadhyay, A., G. Gawarkiewicz, N. Etige, M. Monim and J. Clark, 2019. An Observed Regime Shift in the Formation of Warm Core Rings from the Gulf Stream, Nature - Scientific Reports, https://doi.org/10.1038/s41598-019-48661-9. www.nature.com/articles/s41598-019-48661-9.", "Gangopadhyay, A., N. Etige, G. Gawarkiewicz, A. M. Silver, M. Monim and J. Clark, 2020. A Census of the Warm Core Rings of the Gulf Stream (1980-2017). Journal of Geophysical Research, Oceans, 125, e2019JC016033. https://doi.org/10.1029/2019JC016033.", "QGIS Development Team. QGIS Geographic Information System (2016).", "Decker, B. L. World Geodetic System 1984. World geodetic system 1984 (1986)."]} 
    more » « less