Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Trans-Neptunian objects provide a window into the history of the solar system, but they can be challenging to observe due to their distance from the Sun and relatively low brightness. Here we report the detection of 75 moving objects that we could not link to any other known objects, the faintest of which has a VR magnitude of 25.02 ± 0.93 using the Kernel-Based Moving Object Detection (KBMOD) platform. We recover an additional 24 sources with previously known orbits. We place constraints on the barycentric distance, inclination, and longitude of ascending node of these objects. The unidentified objects have a median barycentric distance of 41.28 au, placing them in the outer solar system. The observed inclination and magnitude distribution of all detected objects is consistent with previously published KBO distributions. We describe extensions to KBMOD, including a robust percentile-based lightcurve filter, an in-line graphics-processing unit filter, new coadded stamp generation, and a convolutional neural network stamp filter, which allow KBMOD to take advantage of difference images. These enhancements mark a significant improvement in the readiness of KBMOD for deployment on future big data surveys such as LSST.more » « less
-
Deep learning (DL) models have achieved paradigm-changing performance in many fields with high dimensional data, such as images, audio, and text. However, the black-box nature of deep neural networks is not only a barrier to adoption in applications such as medical diagnosis, where interpretability is essential, but it also impedes diagnosis of under performing models. The task of diagnosing or explaining DL models requires the computation of additional artifacts, such as activation values and gradients. These artifacts are large in volume, and their computation, storage, and querying raise significant data management challenges. In this paper, we develop a novel data sampling technique that produces approximate but accurate results for these model debugging queries. Our sampling technique utilizes the lower dimension representation learned by the DL model and focuses on model decision boundaries for the data in this lower dimensional space.more » « less
-
Abstract We present the first set of trans-Neptunian objects (TNOs) observed on multiple nights in data taken from the DECam Ecliptic Exploration Project. Of these 110 TNOs, 105 do not coincide with previously known TNOs and appear to be new discoveries. Each individual detection for our objects resulted from a digital tracking search at TNO rates of motion, using two-to-four-hour exposure sets, and the detections were subsequently linked across multiple observing seasons. This procedure allows us to find objects with magnitudesmVR≈ 26. The object discovery processing also included a comprehensive population of objects injected into the images, with a recovery and linking rate of at least 94%. The final orbits were obtained using a specialized orbit-fitting procedure that accounts for the positional errors derived from the digital tracking procedure. Our results include robust orbits and magnitudes for classical TNOs with absolute magnitudesH∼ 10, as well as a dynamically detached object found at 76 au (semimajor axisa≈ 77 au). We find a disagreement between our population of classical TNOs and the CFEPS-L7 three-component model for the Kuiper Belt.more » « less
An official website of the United States government
