skip to main content

Search for: All records

Creators/Authors contains: "Post, David M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Few studies have explored the relative strength of ecogeographic versus lineage-specific effects on a global scale, particularly for poikilotherms, those organisms whose internal temperature varies with their environment. Here, we compile a global dataset of life history traits in Daphnia, at the species-and population-level, and use those data to parse the relative influences of lineage-specific effects and climate. We also compare the thermal response (plasticity) of life history traits and their dependence on climate, temperature, precipitation, and latitude. We found that the mode of evolution for life history traits varies but that the thermal response of life history traits most often follows a random walk model of evolution. We conclude that life history trait evolution in Daphnia is not strongly species-specific but is ecogeographically distinct, suggesting that life history evolution should be understood at the population level for Daphnia and possibly for other poikilotherms.

    more » « less
  2. Abstract

    The introduction of hippos into the wild in Colombia has been marked by their rapid population growth and widespread dispersal on the landscape, high financial costs of management, and conflicting social perspectives on their management and fate. Here we use population projection models to investigate the effectiveness and cost of management options under consideration for controlling introduced hippos. We estimate there are 91 hippos in the middle Magdalena River basin, Colombia, and the hippo population is growing at an estimated rate of 9.6% per year. At this rate, there will be 230 hippos by 2032 and over 1,000 by 2050. Applying the population control methods currently under consideration will cost at least 1–2 million USD to sufficiently decrease hippo population growth to achieve long-term removal, and depending on the management strategy selected, there may still be hippos on the landscape for 50–100 years. Delaying management actions for a single decade will increase minimum costs by a factor of 2.5, and some methods may become infeasible. Our approach illustrates the trade-offs inherent between cost and effort in managing introduced species, as well as the importance of acting quickly, especially when dealing with species with rapid population growth rates and potential for significant ecological and social impacts.

    more » « less
  3. Abstract

    Dams and other anthropogenic barriers have caused global ecological and hydrological upheaval in the blink of the geological eye. In the present article, we synthesize 307 studies in a systematic review of contemporary evolution following reduced connectivity and habitat alteration on freshwater fishes. Genetic diversity loss was more commonly observed for small populations impounded in small habitat patches for many generations behind low-passability barriers. Studies show that impoundments can cause rapid adaptive evolution in migration timing, behavior, life history, temperature tolerance, and morphology, as well as reduce phenotypic variance, which can alter adaptive potential and ecological roles. Fish passage structures can restore migratory populations but also create artificial selection pressures on body size and migration. The accelerating pace of dam removals and the paucity of data for fishes other than salmonids, other vertebrates, invertebrates, and tropical and southern hemisphere organisms highlights the urgent need for more studies on the rapid evolutionary effects of dams.

    more » « less
  4. Abstract

    All animals carry specialized microbiomes, and their gut microbiota are continuously released into the environment through excretion of waste. Here we propose themeta-gutas a novel conceptual framework that addresses the ability of the gut microbiome released from an animal to function outside the host and alter biogeochemical processes mediated by microbes. We demonstrate this dynamic in the hippopotamus (hippo) and the pools they inhabit. We used natural field gradients and experimental approaches to examine fecal and pool water microbial communities and aquatic biogeochemistry across a range of hippo inputs. Sequencing using 16S RNA methods revealed community coalescence between hippo gut microbiomes and the active microbial communities in hippo pools that received high inputs of hippo feces. The shared microbiome between the hippo gut and the waters into which they excrete constitutes ameta-gutsystem that could influence the biogeochemistry of recipient ecosystems and provide a reservoir of gut microbiomes that could influence other hosts. We propose thatmeta-gutdynamics may also occur where other animal species congregate in high densities, particularly in aquatic environments.

    more » « less
  5. null (Ed.)
  6. Abstract

    Animals can impact freshwater ecosystem structure and function in ways that persist well beyond the animal’s active presence. These legacy effects can last for months, even decades, and often increase spatial and temporal heterogeneity within a system. Herein, we review examples of structural, biogeochemical, and trophic legacies from animals in stream and river ecosystems with a focus on large vertebrates. We examine how the decline or disappearance of many native animal populations has led to the loss of their legacy effects. We also demonstrate how anthropogenically altered animal populations, such as livestock and invasive species, provide new legacy effects that may partially replace lost animal legacies. However, these new effects often have important functional differences, including stronger, more widespread and homogenizing effects. Understanding the influence of animal legacy effects is particularly important as native animal populations continue to decline and disappear from many ecosystems, because they illustrate the long-term and often unanticipated consequences of biodiversity loss. We encourage the conservation and restoration of native species to ensure that both animal populations and their legacy effects continue to support the structure and function of river ecosystems.

    more » « less
  7. In many regions of the world, populations of large wildlife have been displaced by livestock, and this may change the functioning of aquatic ecosystems owing to significant differences in the quantity and quality of their dung. We developed a model for estimating loading rates of organic matter (dung) by cattle for comparison with estimated rates for hippopotamus in the Mara River, Kenya. We then conducted a replicated mesocosm experiment to measure ecosystem effects of nutrient and carbon inputs associated with dung from livestock (cattle) versus large wildlife (hippopotamus). Our loading model shows that per capita dung input by cattle is lower than for hippos, but total dung inputs by cattle constitute a significant portion of loading from large herbivores owing to the large numbers of cattle on the landscape. Cattle dung transfers higher amounts of limiting nutrients, major ions and dissolved organic carbon to aquatic ecosystems relative to hippo dung, and gross primary production and microbial biomass were higher in cattle dung treatments than in hippo dung treatments. Our results demonstrate that different forms of animal dung may influence aquatic ecosystems in fundamentally different ways when introduced into aquatic ecosystems as a terrestrially derived resource subsidy. 
    more » « less
  8. Abstract: Introduced species can have strong ecological, social and economic effects on their non-native environment. Introductions of megafaunal species are rare and may contribute to rewilding efforts, but they may also have pronounced socio-ecological effects because of their scale of influence. A recent introduction of the hippopotamus (Hippopotamus amphibius) into Colombia is a novel introduction of a megaherbivore onto a new continent, and raises questions about the future dynamics of the socio-ecological system into which it has been introduced. Here we synthesize current knowledge about the Colombian hippopotamus population, review the literature on the species to predict potential ecological and socio-economic effects of this introduction, and make recommendations for future study. Hippopotamuses can have high population growth rates (7–11%) and, on the current trajectory, we predict there could be 400–800 individuals in Colombia by 2050. The hippopotamus is an ecosystem engineer that can have profound effects on terrestrial and aquatic environments and could therefore affect the native biodiversity of the Magdalena River basin. Hippopotamuses are also aggressive and may pose a threat to the many inhabitants of the region who rely upon the Magdalena River for their livelihoods, although the species could provide economic benefits through tourism. Further research is needed to quantify the current and future size and distribution of this hippopotamus population and to predict the likely ecological, social and economic effects. This knowledge must be balanced with consideration of social and cultural concerns to develop appropriate management strategies for this novel introduction. 
    more » « less