skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hori, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> This paper describes a search for dark photons (γd) in proton-proton collisions at$$ \sqrt{s} $$ s = 13 TeV at the Large Hadron Collider (LHC). The dark photons are searched for in the decay of Higgs bosons (H→γγd) produced through theZHproduction mode. The transverse mass of the system, made of the photon and the missing transverse momentum from the non-interactingγd, presents a distinctive signature as it peaks near the Higgs boson mass. The results presented use the total Run-2 integrated luminosity of 139 fb−1recorded by the ATLAS detector at the LHC. The dominant reducible background processes are estimated using data-driven techniques. A Boosted Decision Tree technique is adopted to enhance the sensitivity of the search. As no excess is observed with respect to the Standard Model prediction, an observed (expected) upper limit on the branching ratio BR(H→γγd) of 2.28% ($$ {2.82}_{-0.84}^{+1.33}\% $$ 2.82 0.84 + 1.33 % ) is set at 95% CL for masslessγd. For massive dark photons up to 40 GeV, the observed (expected) upper limits on BR(H→γγd) at 95% confidence level is found within the [2.19,2.52]% ([2.71,3.11]%) range. 
    more » « less
  2. Abstract This paper presents the observation of four-top-quark ($$t\bar{t}t\bar{t}$$ t t ¯ t t ¯ ) production in proton-proton collisions at the LHC. The analysis is performed using an integrated luminosity of 140 $$\hbox {fb}^{-1}$$ fb - 1 at a centre-of-mass energy of 13 TeV collected using the ATLAS detector. Events containing two leptons with the same electric charge or at least three leptons (electrons or muons) are selected. Event kinematics are used to separate signal from background through a multivariate discriminant, and dedicated control regions are used to constrain the dominant backgrounds. The observed (expected) significance of the measured$$t\bar{t}t\bar{t}$$ t t ¯ t t ¯ signal with respect to the standard model (SM) background-only hypothesis is 6.1 (4.3) standard deviations. The$$t\bar{t}t\bar{t}$$ t t ¯ t t ¯ production cross section is measured to be$$22.5^{+6.6}_{-5.5}$$ 22 . 5 - 5.5 + 6.6  fb, consistent with the SM prediction of$$12.0 \pm 2.4$$ 12.0 ± 2.4 fb within 1.8 standard deviations. Data are also used to set limits on the three-top-quark production cross section, being an irreducible background not measured previously, and to constrain the top-Higgs Yukawa coupling and effective field theory operator coefficients that affect$$t\bar{t}t\bar{t}$$ t t ¯ t t ¯ production. 
    more » « less