skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Poterek, Marya L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although different strategies for mosquito-borne disease prevention can vary significantly in their efficacy and scale of implementation, they all require that individuals comply with their use. Despite this, human behavior is rarely considered in mathematical models of mosquito-borne diseases. Here, we sought to address that gap by establishing general expectations for how different behavioral stimuli and forms of mosquito prevention shape the equilibrium prevalence of disease. To accomplish this, we developed a coupled contagion model tailored to the epidemiology of dengue and preventive behaviors relevant to it. Under our model's parameterization, we found that mosquito biting was the most important driver of behavior uptake. In contrast, encounters with individuals experiencing disease or engaging in preventive behaviors themselves had a smaller influence on behavior uptake. The relative influence of these three stimuli reflected the relative frequency with which individuals encountered them. We also found that two distinct forms of mosquito prevention—namely, personal protection and mosquito density reduction—mediated different influences of behavior on equilibrium disease prevalence. Our results highlight that unique features of coupled contagion models can arise in disease systems with distinct biological features. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026