skip to main content


Search for: All records

Creators/Authors contains: "Potter, Andrew C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Trapped ions offer long coherence times and high fidelity, programmable quantum operations, making them a promising platform for quantum simulation of condensed matter systems, quantum dynamics, and problems related to high-energy physics. We review selected developments in trapped-ion qubits and architectures and discuss quantum simulation applications that utilize these emerging capabilities. This review emphasizes developments in digital (gate-based) quantum simulations that exploit trapped-ion hardware capabilities, such as flexible qubit connectivity, selective mid-circuit measurement, and classical feedback, to simulate models with long-range interactions, explore nonunitary dynamics, compress simulations of states with limited entanglement, and reduce the circuit depths required to prepare or simulate long-range entangled states.

     
    more » « less
    Free, publicly-accessible full text available October 31, 2025
  2. Monitored quantum circuits exhibit entanglement transitions at certain measurement rates. Such a transition separates phases characterized by how much information an observer can learn from the measurement outcomes. We study SU(2)-symmetric monitored quantum circuits, using exact numerics and a mapping onto an effective statistical-mechanics model. Due to the symmetry's non-Abelian nature, measuring qubit pairs allows for nontrivial entanglement scaling even in the measurement-only limit. We find a transition between a volume-law entangled phase and a critical phase whose diffusive purification dynamics emerge from the non-Abelian symmetry. Additionally, we identify a “spin-sharpening transition.” Across the transition, the rate at which measurements reveal information about the total spin quantum number changes parametrically with system size. 
    more » « less
  3. We present a numerical method to simulate nonequilibrium Floquet steady states of one-dimensional periodically driven many-body systems coupled to a dissipative bath, based on a matrix product operator ansatz for the Floquet density matrix in frequency space. This method enables access to large systems beyond the reach of exact simulations, while retaining the periodic micromotion information. An excited-state extension of this technique allows computation of the dynamical approach to the steady state. We benchmark our method with a driven-dissipative Ising model and apply it to study the possibility of stabilizing prethermal discrete time-crystalline order by coupling to a cold bath. 
    more » « less