skip to main content


Search for: All records

Creators/Authors contains: "Powell, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The short-lived buckling instability is responsible for the formation of at least some box/peanut (B/P) shaped bulges, which are observed in most massive, z = 0, barred galaxies. Nevertheless, it has also been suggested that B/P bulges form via the slow trapping of stars on to vertically extended resonant orbits. The key difference between these two scenarios is that when the bar buckles, symmetry about the mid-plane is broken for a period of time. We use a suite of simulations (with and without gas) to show that when the buckling is sufficiently strong, a residual mid-plane asymmetry persists for several Gyrs after the end of the buckling phase, and is visible in simulation images. On the other hand, images of B/P bulges formed through resonant trapping and/or weak buckling remain symmetric about the mid-plane. We develop two related diagnostics to identify and quantify mid-plane asymmetry in simulation images of galaxies that are within 3° of edge-on orientation, allowing us to test whether the presence of a B/P-shaped bulge can be explained by a past buckling event. We apply our diagnostics to two nearly edge-on galaxies with B/P bulges from the Spitzer Survey of Stellar Structure in Galaxies, finding no mid-plane asymmetry, implying these galaxies formed their bulges either by resonant trapping or by buckling more than ∼5 Gyr ago. We conclude that the formation of B/P bulges through strong buckling may be a rare event in the past ∼5 Gyr.

     
    more » « less
  2. Abstract

    Growing concerns about environmental impacts of dairy farms have driven producers to address greenhouse gas (GHG) emissions and nitrogen (N) losses from soil following land application of dairy manure. Tannin dietary additives have proved to be a successful intervention for mitigating GHG and ammonia (NH3) emissions at the barn scale. However, it is unknown how land application of dairy manure from cows fed tannin diets affects crop–soil nitrogen dynamics and soil GHG flux. To test this, cows were fed diets at three levels of tannins (0.0%, 0.4%, and 1.8% of dry matter intake) and their manure was field applied at two N rates (240 and 360 kg N ha−1). Soil NH4+‐N, NO3‐N, corn silage yield, and soil GHG flux were then measured over a full growing season. Soils amended with tannin manure had lower initial NH4+‐N concentrations and lower total mineral N (NH4+‐N + NO3‐N) concentrations 19 days after application, compared to soils amended with no tannin manures. Despite lower early season N availability in tannin‐fertilized plots, there were no differences in corn silage yield. No differences in soil GHG and NH3emissions were observed between manure‐amended treatments. These results demonstrate that while tannin addition to dairy cow feed does not offer short‐term GHG or NH3emissions reductions after field manure application, it can promote slower soil N mineralization that may reduce reactive N loss after initial application.

     
    more » « less
  3. Abstract

    Gravitational lensing by massive objects along the line of sight to the source causes distortions to gravitational wave (GW) signals; such distortions may reveal information about fundamental physics, cosmology, and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO-Virgo network. We search for repeated signals from strong lensing by (1) performing targeted searches for subthreshold signals, (2) calculating the degree of overlap among the intrinsic parameters and sky location of pairs of signals, (3) comparing the similarities of the spectrograms among pairs of signals, and (4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by (1) frequency-independent phase shifts in strongly lensed images, and (2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the nondetection of GW lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects.

     
    more » « less
    Free, publicly-accessible full text available July 31, 2025
  4. Abstract

    We report the observation of a coalescing compact binary with component masses 2.5–4.5Mand 1.2–2.0M(all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5Mat 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of5547+127Gpc3yr1for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star–black hole merger, GW230529_181500-like sources may make up the majority of neutron star–black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star–black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap.

     
    more » « less
    Free, publicly-accessible full text available July 26, 2025
  5. Gravitational waves provide a unique tool for observational astronomy. While the first LIGO–Virgo catalogue of gravitational wave transients (GWTC-1) contains 11 signals from black hole and neutron star binaries, the number of observations is increasing rapidly as detector sensitivity improves. To extract information from the observed signals, it is imperative to have fast, flexible, and scalable inference techniques. In a previous paper, we introduced BILBY: a modular and user-friendly Bayesian inference library adapted to address the needs of gravitational-wave inference. In this work, we demonstrate that BILBY produces reliable results for simulated gravitational-wave signals from compact binary mergers, and verify that it accurately reproduces results reported for the 11 GWTC-1 signals. Additionally, we provide configuration and output files for all analyses to allow for easy reproduction, modification, and future use. This work establishes that BILBY is primed and ready to analyse the rapidly growing population of compact binary coalescence gravitational-wave signals. 
    more » « less
  6. Free, publicly-accessible full text available April 30, 2025