Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Isothiazolinones biocides are water-soluble, low molecular weight, nitrogenous compounds widely used to prevent microbial growth in a variety of applications including personal care products and building façade materials. Because isothiazolinones from buildings wash off and enter stormwater, interactions with terrestrial plants may represent an important part of the environmental fate of these compounds ( e.g. , in green stormwater infrastructure). Using the model plant Arabidopsis thaliana grown hydroponically, we observed rapid (≥99% within 24 hours), plant-driven removal of four commonly used isothiazolinones: benzisothiazolinone (BIT), chloromethylisothiazolinone, methylisothiazolinone, and octylisothiazolinone. No significant differences in uptake rate occurred between the four compounds; therefore, BIT was used for further detailed investigation. BIT uptake by Arabidopsis was concentration-dependent in a manner that implicates transporter-mediated substrate inhibition. BIT uptake was also minimally impacted by multiple BIT spikes, suggesting constituently active uptake. BIT plant uptake rate was robust, unaffected by multiple inhibitors. We investigated plant metabolism as a relevant removal process. Proposed major metabolites that significantly increased in the BIT-exposure treatment compared to the control included: endogenous plant compounds nicotinic acid (confirmed with a reference standard) and phenylthioacetohydroximic acid, a possible amino acid–BIT conjugate, and two accurate masses of interest. Two of the compounds (phenylthioacetohydroximic acid and TP 470) were also present in increased amounts in the hydroponic medium after BIT exposure, possibly via plant excretion. Upregulation of endogenous plant compounds is environmentally significant because it demonstrates that BIT impacts plant biology. The rapid plant-driven isothiazolinone removal observed here indicates that plant-isothiazolinone processes could be relevant to the environmental fate of these stormwater compounds.more » « less
-
Gas sensing for dimethyl sulfoxide (DMSO) based on rotational absorption spectroscopy is demonstrated in the 220–330 GHz frequency range using a robust electronic THz-wave spectrometer. DMSO is a flammable liquid commonly used as a solvent in the food and pharmaceutical industries, materials synthesis, and manufacturing. DMSO is a hazard to human health and the work environment; hence, remote gas sensing for DMSO environmental and process monitoring is desired. Absorption measurements were carried out for pure DMSO at 297 K and 0.4 Torr (53 Pa). DMSO was shown to have a unique rotational fingerprint with a series of repeating absorption bands. The frequencies of transitions observed in the present study were found to be in good agreement with spectral simulations carried out based on rotational parameters derived in prior work. Newly, intensities of the rotational absorption lines were experimentally observed and reported for DMSO in this study. Measured intensities for major absorption lines were found in very good agreement with relative line intensities estimated by quantum mechanical calculations. The sensor developed here exhibited a detection limit of 1.3 × 1015–2.6 × 1015 DMSO molecules/cm3 per meter of absorption path length, with the potential for greater sensitivity with signal-to-noise improvements. The study illustrates the potential of all electronic THz-wave systems for miniaturized remote gas sensors.more » « less
An official website of the United States government
