skip to main content

Search for: All records

Creators/Authors contains: "Pozzo, Lilo D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Objectives: To determine if solar-powered battery systems could be successfully used for electricity-dependent medical devices by families during a power outage. Methods: We assessed the use of and satisfaction with solar-powered battery systems distributed to 15 families following Hurricane Maria in rural Puerto Rico. Interviews were conducted in July 2018, 3 mo following distribution of the systems. Results: The solar-powered battery systems powered refrigeration for medications and prescribed diets, asthma therapy, inflatable mattresses to prevent bedsores, and continuous positive airway pressure machines for sleep apnea. Despite some system problems, such as inadequate power, defective cables, and blown fuses, families successfully dealt with these issues with some outside help. Almost all families were pleased with the systems and a majority would recommend solar-powered battery systems to a neighbor. Conclusions: Families accepted and successfully used solar-powered battery systems to power medical devices. Solar-powered battery systems should be considered as alternatives to generators for power outages after hurricanes and other disasters. Additional research and analysis are needed to inform policy on increasing access to such systems.
  2. Free, publicly-accessible full text available November 17, 2023
  3. Free, publicly-accessible full text available November 17, 2023
  4. The molecular morphology and dynamics of conjugated polymers in the bulk solid state play a significant role in determining macroscopic charge transport properties. To understand this relationship, molecular dynamics (MD) simulations and quantum mechanical calculations are used to evaluate local electronic properties. In this work, we investigate the importance of system and simulation parameters, such as force fields and equilibration methods, when simulating amorphous poly(3-hexylthiophene) (P3HT), a model semiconducting polymer. An assessment of MD simulations for five different published P3HT force fields is made by comparing results to experimental wide-angle X-ray scattering (WAXS) and to a broad range of quasi-elastic neutron scattering (QENS) data. Moreover, an in silico analysis of force field parameters reveals that atomic partial charges and torsion potentials along the backbone and side chains have the greatest impact on structure and dynamics related to charge transport mechanisms in P3HT.
  5. Ultrasound acoustic waves are demonstrated to assemble poly-3-hexylthiophene (P3HT) chains into nanofibers after they are fully dissolved in what are commonly considered to be ‘good’ solvents. In the absence of ultrasound, the polymer remains fully dissolved and does not self-assemble for weeks. UV-vis spectroscopy, ultra-small angle X-ray scattering (USAXS) and small angle neutron scattering (SANS) are used to characterize the induced assembly process and to quantify the fraction of polymer that forms nanofibers. It is determined that the solvent type, insonation time, and aging periods are all important factors affecting the structure and final concentration of fibers. The effect of changing polymer regio-regularity, alkyl chain length, and side chain to thiophene ratio are also explored. High intensity focused ultrasound (HIFU) fields of variable intensity are utilized to reveal the physical mechanisms leading to nanofiber formation, which is strongly correlated to cavitation events in the solvent. This in situ HIFU cell, which is designed for simultaneous scattering analysis, is also used to probe for structural changes occurring over multiple length scales using USAXS and SANS. The proposed acoustic assembly mechanism suggests that, even when dispersed in ‘good’ solvents such as bromobenzene, dichlorobenzene and chloroform, P3HT chains are still not in amore »thermodynamically stable state. Instead, they are stabilized by local energy barriers that slow down and effectively prevent crystallization. Ultrasound fields are found to provide enough mechanical energy to overcome these barriers, triggering the formation of small crystalline nuclei that subsequently seed the growth of larger nanofibers.« less
  6. The nanoscale structure and macroscopic morphology of π-conjugated polymers are very important for their electronic application. While ordered single crystals of small molecules have been obtained via solution deposition, macroscopically aligned films of π-conjugated polymers deposited directly from solution have always required surface modification or complex pre-deposition processing of the solution. Here, ordered nanowires were obtained via shear-enhanced crystallization of π-conjugated polymers at the air–liquid–solid interface using simple deposition of the polymer solution onto an inclined substrate. The formation of macroscopically aligned nanowire arrays was found to be due to the synergy between intrinsic (π-conjugated backbone) and external (crystallization conditions) effects. The oriented nanowires showed remarkable improvement in the charge carrier mobility compared to spin-coated films as characterized in organic field-effect transistors (OFETs). Considering the simplicity and large-scale applicability, shear-enhanced crystallization of π-conjugated polymers provides a promising strategy to achieve high-performance polymer semiconductor films for electronics applications.