skip to main content

Search for: All records

Creators/Authors contains: "Prakapenka, V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Sub-Neptune exoplanets may have thick hydrogen envelopes and therefore develop a high-pressure interface between hydrogen and the underlying silicates/metals. Some sub-Neptunes may convert to super-Earths via massive gas loss. If hydrogen chemically reacts with oxides and metals at high pressures and temperatures (PT), it could impact the structure and composition of the cores and atmospheres of sub-Neptunes and super-Earths. While H2gas is a strong reducing agent at low pressures, the behavior of hydrogen is unknown at thePTexpected for sub-Neptunes’ interiors, where hydrogen is a dense supercritical fluid. Here we report experimental results of reactions between ferrous/ferric oxides and hydrogen at 20–40 GPa and 1000–4000 K utilizing the pulsed laser-heated diamond-anvil cell combined with synchrotron X-ray diffraction. Under these conditions, hydrogen spontaneously strips iron off the oxides, forming Fe-H alloys and releasing oxygen to the hydrogen medium. In a planetary context where this reaction may occur, the Fe-H alloy may sink to the metallic part of the core, while released oxygen may stabilize as water in the silicate layer, providing a mechanism to ingas hydrogen to the deep interiors of sub-Neptunes. Water produced from the redox reaction can also partition to the atmosphere of sub-Neptunes, which has important implications for understanding the composition of their atmospheres. In addition, super-Earths converted from sub-Neptunes may contain a large amount of hydrogen and water in their interiors (at least a few wt% H2O). This is distinct from smaller rocky planets, which were formed relatively dry (likely a few hundredths wt% H2O).

    more » « less
  2. Abstract

    The production of metal via the iron disproportionation reaction in the deep Earth has been a long debated topic with important implications for the geochemistry of the lower mantle. To explore the occurrence of the iron disproportionation reaction from 25 to 65 GPa, a natural almandine‐pyrope‐grossular garnet was studied with in situ X‐ray diffraction (XRD) in the laser‐heated diamond anvil cell and ex situ scanning electron microscopy (SEM) techniques. Upon heating the natural almandine‐pyrope‐grossular garnet up to 3000 K up to 65 GPa, the formation of phase assemblage consisting of bridgmanite, stishovite, and davemaoite was confirmed by XRD, but because of the low abundance of Fe metal and small grain size, XRD was determined not to be effective in detecting the disproportionation reaction. Examination of the samples recovered between 39 and 64 GPa by SEM analysis revealed the presence of nm‐scale disproportionated iron metal grains as an additional product of this reaction that was not detectable in the XRD patterns. Volume compression data of bridgmanite synthesized in the experiments were fit to the Birch‐Murnaghan equation of state and compared to similar compositions. Bridgmanite was found to decompress to the LiNbO3‐type structure, indicating a high FeAlO3content, in accordance with the occurrence of a disproportionation reaction. The experimental confirmation of disproportionated metallic Fe has significant implications for the distribution of siderophile and volatile elements in the lower mantle.

    more » « less
  3. null (Ed.)
  4. Abstract We have performed sound velocity and unit cell volume measurements of three synthetic, ultrafine micro/nanocrystalline grossular samples up to 50 GPa using Brillouin spectroscopy and synchrotron X-ray diffraction. The samples are characterized by average grain sizes of 90 nm, 93 nm and 179 nm (hereinafter referred to as samples Gr90, Gr93, and Gr179, respectively). The experimentally determined sound velocities and elastic properties of Gr179 sample are comparable with previous measurements, but slightly higher than those of Gr90 and Gr93 under ambient conditions. However, the differences diminish with increasing pressure, and the velocity crossover eventually takes place at approximately 20–30 GPa. The X-ray diffraction peaks of the ultrafine micro/nanocrystalline grossular samples significantly broaden between 15–40 GPa, especially for Gr179. The velocity or elasticity crossover observed at pressures over 30 GPa might be explained by different grain size reduction and/or inhomogeneous strain within the individual grains for the three grossular samples, which is supported by both the pressure-induced peak broadening observed in the X-ray diffraction experiments and transmission electron microscopy observations. The elastic behavior of ultrafine micro/nanocrystalline silicates, in this case, grossular, is both grain size and pressure dependent. 
    more » « less
  5. Experiments accessing extreme conditions at x-ray free electron lasers (XFELs) involve rapidly evolving conditions of temperature. Here, we report time-resolved, direct measurements of temperature using spectral streaked optical pyrometry of x-ray and optical laser-heated states at the High Energy Density instrument of the European XFEL. This collection of typical experiments, coupled with numerical models, outlines the reliability, precision, and meaning of time dependent temperature measurements using optical emission at XFEL sources. Dynamic temperatures above 1500 K are measured continuously from spectrally- and temporally-resolved thermal emission at 450–850 nm, with time resolution down to 10–100 ns for 1–200 μs streak camera windows, using single shot and integrated modes. Targets include zero-pressure foils free-standing in air and in vacuo, and high-pressure samples compressed in diamond anvil cell multi-layer targets. Radiation sources used are 20-fs hard x-ray laser pulses at 17.8 keV, in single pulses or 2.26 MHz pulse trains of up to 30 pulses, and 250-ns infrared laser single pulses. A range of further possibilities for optical measurements of visible light in x-ray laser experiments using streak optical spectroscopy are also explored, including for the study of x-ray induced optical fluorescence, which often appears as background in thermal radiation measurements. We establish several scenarios where combined emissions from multiple sources are observed and discuss their interpretation. Challenges posed by using x-ray lasers as non-invasive probes of the sample state are addressed.

    more » « less
    Free, publicly-accessible full text available August 7, 2024
  6. null (Ed.)
    X-ray diffraction indicates that the structure of the recently discovered carbonaceous sulfur hydride (C-S-H) room temperature superconductor is derived from previously established van der Waals compounds found in the H2S-H2 and CH4-H2 systems. Crystals of the superconducting phase were produced by a photochemical synthesis technique leading to the superconducting critical temperature Tc of 288 K at 267 GPa. X-ray diffraction patterns measured from 124 to 178 GPa, within the pressure range of the superconducting phase, are consistent with an orthorhombic structure derived from the Al2Cu-type determined for (H2S)2H2 and (CH4)2H2 that differs from those predicted and observed for the S-H system to these pressures. The formation and stability of the C-S-H compound can be understood in terms of the close similarity in effective volumes of the H2S and CH4 components, and denser carbon-bearing S-H phases may form at higher pressures. The results are crucial for understanding the very high superconducting Tc found in the C-S-H system at megabar pressures. 
    more » « less
  7. Abstract

    Super‐Earths ranging up to 10 Earth masses (ME) with Earth‐like density are common among the observed exoplanets thus far, but their measured masses and radii do not uniquely elucidate their internal structure. Exploring the phase transitions in the Mg‐silicates that define the mantle‐structure of super‐Earths is critical to characterizing their interiors, yet the relevant terapascal conditions are experimentally challenging for direct structural analysis. Here we investigated the crystal chemistry of Fe3O4as a low‐pressure analog to Mg2SiO4between 45–115 GPa and up to 3000 K using powder and single crystal X‐ray diffraction in the laser‐heated diamond anvil cell. Between 60–115 GPa and above 2000 K, Fe3O4adopts an 8‐fold coordinated Th3P4‐type structure (I‐43d,Z = 4) with disordered Fe2+and Fe3+into one metal site. This Fe‐oxide phase is isostructural with that predicted for Mg2SiO4above 500 GPa in super‐Earth mantles and suggests that Mg2SiO4can incorporate both ferric and ferrous iron at these conditions. The pressure‐volume behavior observed in this 8‐fold coordinated Fe3O4indicates a maximum 4% density increase across the 6‐ to 8‐fold coordination transition in the analog Mg‐silicate. Reassessment of the FeO—Fe3O4fugacity buffer considering the Fe3O4phase relationships identified in this study reveals that increasing pressure and temperature to 120 GPa and 3000 K in Earth and planetary mantles drives iron toward oxidation.

    more » « less
  8. null (Ed.)